Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971152

ABSTRACT

We identify a population of Protogenin-positive (PRTG+ve) MYChigh NESTINlow stem cells in the four-week-old human embryonic hindbrain that subsequently localizes to the ventricular zone of the rhombic lip (RLVZ). Oncogenic transformation of early Prtg+ve rhombic lip stem cells initiates group 3 medulloblastoma (Gr3-MB)-like tumors. PRTG+ve stem cells grow adjacent to a human-specific interposed vascular plexus in the RLVZ, a phenotype that is recapitulated in Gr3-MB but not in other types of medulloblastoma. Co-culture of Gr3-MB with endothelial cells promotes tumor stem cell growth, with the endothelial cells adopting an immature phenotype. Targeting the PRTGhigh compartment of Gr3-MB in vivo using either the diphtheria toxin system or chimeric antigen receptor T cells constitutes effective therapy. Human Gr3-MBs likely arise from early embryonic RLVZ PRTG+ve stem cells inhabiting a specific perivascular niche. Targeting the PRTGhigh compartment and/or the perivascular niche represents an approach to treat children with Gr3-MB.

2.
Angew Chem Int Ed Engl ; : e202405250, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782715

ABSTRACT

Top-down control of small motion is possible through top-down controlled molecular motors in replacement of larger actuators like MEMS or NEMS (micro- or nano-electromechanical systems) in the current precision technology. Improving top-down control of molecular motors to every single step is desirable for this purpose, and also for synchronization of motor actions for amplified effects. Here we report a designed single-stranded DNA molecular motor powered by alternated ultraviolet and visible light for processive track-walking, with the two light colours each locking the motor in a full directional step to allow saturated driving but no overstepping. This novel nano-optomechanical driving mechanism pushes the top-down control of molecular motors down to every single step, thus providing a key technical capability to advance the molecular motor-based precision technology and also motor synchronization for amplified effects.

3.
Elife ; 122024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567944

ABSTRACT

Aging and senescence are characterized by pervasive transcriptional dysfunction, including increased expression of transposons and introns. Our aim was to elucidate mechanisms behind this increased expression. Most transposons are found within genes and introns, with a large minority being close to genes. This raises the possibility that transcriptional readthrough and intron retention are responsible for age-related changes in transposon expression rather than expression of autonomous transposons. To test this, we compiled public RNA-seq datasets from aged human fibroblasts, replicative and drug-induced senescence in human cells, and RNA-seq from aging mice and senescent mouse cells. Indeed, our reanalysis revealed a correlation between transposons expression, intron retention, and transcriptional readthrough across samples and within samples. Both intron retention and readthrough increased with aging or cellular senescence and these transcriptional defects were more pronounced in human samples as compared to those of mice. In support of a causal connection between readthrough and transposon expression, analysis of models showing induced transcriptional readthrough confirmed that they also show elevated transposon expression. Taken together, our data suggest that elevated transposon reads during aging seen in various RNA-seq dataset are concomitant with multiple transcriptional defects. Intron retention and transcriptional readthrough are the most likely explanation for the expression of transposable elements that lack a functional promoter.


Subject(s)
Aging , DNA Transposable Elements , Animals , Mice , Humans , Aged , Introns , RNA-Seq , Aging/genetics , Promoter Regions, Genetic , DNA Transposable Elements/genetics
4.
NPJ Syst Biol Appl ; 9(1): 28, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37355674

ABSTRACT

Cancer is widely considered a genetic disease. Notably, recent works have highlighted that every human gene may possibly be associated with cancer. Thus, the distinction between genes that drive oncogenesis and those that are associated to the disease, but do not play a role, requires attention. Here we investigated single cells and bulk (cell-population) datasets of several cancer transcriptomes and proteomes in relation to their healthy counterparts. When analyzed by machine learning and statistical approaches in bulk datasets, both general and cancer-specific oncogenes, as defined by the Cancer Genes Census, show invariant behavior to randomly selected gene sets of the same size for all cancers. However, when protein-protein interaction analyses were performed, the oncogenes-derived networks show higher connectivity than those relative to random genes. Moreover, at single-cell scale, we observe variant behavior in a subset of oncogenes for each considered cancer type. Moving forward, we concur that the role of oncogenes needs to be further scrutinized by adopting protein causality and higher-resolution single-cell analyses.


Subject(s)
Genes, Tumor Suppressor , Neoplasms , Humans , Oncogenes/genetics , Neoplasms/genetics , Transcriptome
6.
Nature ; 609(7929): 1021-1028, 2022 09.
Article in English | MEDLINE | ID: mdl-36131014

ABSTRACT

Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain1-4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage5-8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES+KI67+ unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB.


Subject(s)
Cell Differentiation , Cerebellar Neoplasms , Medulloblastoma , Metencephalon , Cell Differentiation/genetics , Cell Lineage , Cerebellar Neoplasms/classification , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellum/embryology , Cerebellum/pathology , Core Binding Factor alpha Subunits/genetics , Hedgehog Proteins/metabolism , Histone Demethylases , Humans , Ki-67 Antigen/metabolism , Medulloblastoma/classification , Medulloblastoma/genetics , Medulloblastoma/pathology , Metencephalon/embryology , Metencephalon/pathology , Muscle Proteins , Mutation , Otx Transcription Factors/deficiency , Otx Transcription Factors/genetics , Repressor Proteins , T-Box Domain Proteins/metabolism , Transcription Factors
8.
Cell ; 181(6): 1329-1345.e24, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32445698

ABSTRACT

Posterior fossa A (PFA) ependymomas are lethal malignancies of the hindbrain in infants and toddlers. Lacking highly recurrent somatic mutations, PFA ependymomas are proposed to be epigenetically driven tumors for which model systems are lacking. Here we demonstrate that PFA ependymomas are maintained under hypoxia, associated with restricted availability of specific metabolites to diminish histone methylation, and increase histone demethylation and acetylation at histone 3 lysine 27 (H3K27). PFA ependymomas initiate from a cell lineage in the first trimester of human development that resides in restricted oxygen. Unlike other ependymomas, transient exposure of PFA cells to ambient oxygen induces irreversible cellular toxicity. PFA tumors exhibit a low basal level of H3K27me3, and, paradoxically, inhibition of H3K27 methylation specifically disrupts PFA tumor growth. Targeting metabolism and/or the epigenome presents a unique opportunity for rational therapy for infants with PFA ependymoma.


Subject(s)
Ependymoma/genetics , Ependymoma/metabolism , Epigenome/genetics , Infratentorial Neoplasms/genetics , Infratentorial Neoplasms/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line , Cell Proliferation/genetics , DNA Methylation/genetics , Epigenomics/methods , Histones/genetics , Histones/metabolism , Humans , Infant , Lysine/genetics , Lysine/metabolism , Male , Mice, Inbred C57BL , Mutation/genetics
9.
Nat Med ; 26(5): 720-731, 2020 05.
Article in English | MEDLINE | ID: mdl-32341580

ABSTRACT

Recurrent medulloblastoma and ependymoma are universally lethal, with no approved targeted therapies and few candidates presently under clinical evaluation. Nearly all recurrent medulloblastomas and posterior fossa group A (PFA) ependymomas are located adjacent to and bathed by the cerebrospinal fluid, presenting an opportunity for locoregional therapy, bypassing the blood-brain barrier. We identify three cell-surface targets, EPHA2, HER2 and interleukin 13 receptor α2, expressed on medulloblastomas and ependymomas, but not expressed in the normal developing brain. We validate intrathecal delivery of EPHA2, HER2 and interleukin 13 receptor α2 chimeric antigen receptor T cells as an effective treatment for primary, metastatic and recurrent group 3 medulloblastoma and PFA ependymoma xenografts in mouse models. Finally, we demonstrate that administration of these chimeric antigen receptor T cells into the cerebrospinal fluid, alone or in combination with azacytidine, is a highly effective therapy for multiple metastatic mouse models of group 3 medulloblastoma and PFA ependymoma, thereby providing a rationale for clinical trials of these approaches in humans.


Subject(s)
Brain Neoplasms/therapy , Cancer Vaccines/administration & dosage , Cerebrospinal Fluid/drug effects , Ependymoma/therapy , Immunotherapy, Adoptive/methods , Medulloblastoma/therapy , Animals , Brain Neoplasms/cerebrospinal fluid , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cerebellar Neoplasms/cerebrospinal fluid , Cerebellar Neoplasms/immunology , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/therapy , Cerebrospinal Fluid/immunology , Child , Child, Preschool , Drug Delivery Systems/methods , Ependymoma/cerebrospinal fluid , Ependymoma/immunology , Ependymoma/pathology , Female , HEK293 Cells , Humans , Infant , Injections, Intraventricular , Male , Medulloblastoma/cerebrospinal fluid , Medulloblastoma/immunology , Medulloblastoma/pathology , Mice , Neoplasm Metastasis , Receptors, Chimeric Antigen/administration & dosage , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation , Treatment Outcome , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
Dev Biol ; 461(2): 197-209, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32087195

ABSTRACT

The assembly of basement membranes (BMs) into tissue-specific morphoregulatory structures requires non-core BM components. Work in Drosophila indicates a principal role of collagen-binding matricellular glycoprotein SPARC (Secreted Protein, Acidic, Rich in Cysteine) in larval fat body BM assembly. We report that SPARC and collagen IV (Col(IV)) first colocalize in the trans-Golgi of hemocyte-like cell lines. Mutating the collagen-binding domains of Drosophila SPARC led to the loss of colocalization with Col(IV), a fibrotic-like BM, and 2nd instar larval lethality, indicating that SPARC binding to Col(IV) is essential for survival. Analysis of this mutant at 2nd instar reveals increased Col(IV) puncta within adipocytes, reflecting a disruption in the intracellular chaperone-like activity of SPARC. Removal of the disulfide bridge in the C-terminal EF-hand2 of SPARC, which is known to enhance Col(IV) binding, did not lead to larval lethality; however, a less intense fat body phenotype was observed. Additionally, both SPARC mutants exhibited altered fat body BM pore topography. Wing imaginal disc-derived SPARC did not localize within Col(IV)-rich matrices. This raises the possibility that SPARC interaction with Col(IV) requires initial intracellular interaction to colocalize at the BM or that wing-derived SPARC undergoes differential post-translational modifications that impacts its function. Collectively, these data provide evidence that the chaperone-like activity of SPARC on Col(IV) begins just prior to their co-secretion and demonstrate for the first time that the Col(IV) chaperone-like activity of SPARC is necessary for Drosophila development beyond the 2nd instar.


Subject(s)
Basement Membrane/metabolism , Collagen Type IV/metabolism , Drosophila Proteins/physiology , Molecular Chaperones/physiology , Osteonectin/physiology , Adipocytes/cytology , Animals , Animals, Genetically Modified , Binding Sites , COP-Coated Vesicles/metabolism , CRISPR-Cas Systems , Cell Size , Cystine/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Fat Body/cytology , Fat Body/growth & development , Genes, Lethal , Hemocytes/metabolism , Larva , Osteonectin/chemistry , Osteonectin/deficiency , Osteonectin/genetics , Protein Domains , Wings, Animal/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...