Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Nat Commun ; 15(1): 5153, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38886376

Despite decades of research, we still do not understand how spontaneous human seizures start and spread - especially at the level of neuronal microcircuits. In this study, we used laminar arrays of micro-electrodes to simultaneously record the local field potentials and multi-unit neural activities across the six layers of the neocortex during focal seizures in humans. We found that, within the ictal onset zone, the discharges generated during a seizure consisted of current sinks and sources only within the infra-granular and granular layers. Outside of the seizure onset zone, ictal discharges reflected current flow in the supra-granular layers. Interestingly, these patterns of current flow evolved during the course of the seizure - especially outside the seizure onset zone where superficial sinks and sources extended into the deeper layers. Based on these observations, a framework describing cortical-cortical dynamics of seizures is proposed with implications for seizure localization, surgical targeting, and neuromodulation techniques to block the generation and propagation of seizures.


Electroencephalography , Neocortex , Seizures , Humans , Seizures/physiopathology , Neocortex/physiopathology , Neocortex/physiology , Male , Adult , Female , Young Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/physiology , Microelectrodes , Neurons/physiology
...