Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 6: 238, 2015.
Article in English | MEDLINE | ID: mdl-26217379

ABSTRACT

We observed that the third leading cause of blindness in the world, age-related macular degeneration (AMD), occurs at a very low documented frequency in a population-based cohort from Timor-Leste. Thus, we determined a complete catalog of the ancestry of the Timorese by analysis of whole exome chip data and haplogroup analysis of SNP genotypes determined by sequencing the Hypervariable I and II regions of the mitochondrial genome and 17 genotyped YSTR markers obtained from 535 individuals. We genotyped 20 previously reported AMD-associated SNPs in the Timorese to examine their allele frequencies compared to and between previously documented AMD cohorts of varying ethnicities. For those without AMD (average age > 55 years), genotype and allele frequencies were similar for most SNPs with a few exceptions. The major risk allele of HTRA1 rs11200638 (10q26) was at a significantly higher frequency in the Timorese, as well as 3 of the 5 protective CFH (1q32) SNPs (rs800292, rs2284664, and rs12066959). Additionally, the most commonly associated AMD-risk SNP, CFH rs1061170 (Y402H), was also seen at a much lower frequency in the Korean and Timorese populations than in the assessed Caucasian populations (C ~7 vs. ~40%, respectively). The difference in allele frequencies between the Timorese population and the other genotyped populations, along with the haplogroup analysis, also highlight the genetic diversity of the Timorese. Specifically, the most common ancestry groupings were Oceanic (Melanesian and Papuan) and Eastern Asian (specifically Han Chinese). The low prevalence of AMD in the Timorese population (2 of 535 randomly selected participants) may be due to the enrichment of protective alleles in this population at the 1q32 locus.

2.
Hum Biol ; 86(3): 147-65, 2014.
Article in English | MEDLINE | ID: mdl-25836744

ABSTRACT

Molecular-based characterizations of Andean peoples are traditionally conducted in the service of elucidating continent-level evolutionary processes in South America. Consequently, genetic variation among "western" Andean populations is often represented in relation to variation among "eastern" Amazon and Orinoco River Basin populations. This west-east contrast in patterns of population genetic variation is typically attributed to large-scale phenomena, such as dual founder colonization events or differing long-term microevolutionary histories. However, alternative explanations that consider the nature and causes of population genetic diversity within the Andean region remain underexplored. Here we examine population genetic diversity in the Peruvian Central Andes using data from the mtDNA first hypervariable region and Y-chromosome short tandem repeats among 17 newly sampled populations and 15 published samples. Using this geographically comprehensive data set, we first reassessed the currently accepted pattern of western versus eastern population genetic structure, which our results ultimately reject: mtDNA population diversities were lower, rather than higher, within Andean versus eastern populations, and only highland Y-chromosomes exhibited significantly higher within-population diversities compared with eastern groups. Multiple populations, including several highland samples, exhibited low genetic diversities for both genetic systems. Second, we explored whether the implementation of Inca state and Spanish colonial policies starting at about ad 1400 could have substantially restructured population genetic variation and consequently constitute a primary explanation for the extant pattern of population diversity in the Peruvian Central Andes. Our results suggest that Peruvian Central Andean population structure cannot be parsimoniously explained as the sole outcome of combined Inca and Spanish policies on the region's population demography: highland populations differed from coastal and lowland populations in mtDNA genetic structure only; highland groups also showed strong evidence of female-biased gene flow and/or effective sizes relative to other Peruvian ecozones. Taken together, these findings indicate that population genetic structure in the Peruvian Central Andes is considerably more complex than previously reported and that characterizations of and explanations for genetic variation may be best pursued within more localized regions and defined time periods.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Variation , Genetics, Population , Indians, South American/genetics , Chromosomes, Human, Y , Female , Haplotypes , Humans , Male , Microsatellite Repeats , Molecular Sequence Data , Peru , Polymerase Chain Reaction , Population Dynamics , South America
3.
PLoS One ; 7(11): e50070, 2012.
Article in English | MEDLINE | ID: mdl-23189179

ABSTRACT

The genus Mycobacterium encompasses over one hundred named species of environmental and pathogenic organisms, including the causative agents of devastating human diseases such as tuberculosis and leprosy. The success of these human pathogens is due in part to their ability to rapidly adapt to their changing environment and host. Recombination is the fastest way for bacterial genomes to acquire genetic material, but conflicting results about the extent of recombination in the genus Mycobacterium have been reported. We examined a data set comprising 18 distinct strains from 13 named species for evidence of recombination. Genomic regions common to all strains (accounting for 10% to 22% of the full genomes of all examined species) were aligned and concatenated in the chromosomal order of one mycobacterial reference species. The concatenated sequence was screened for evidence of recombination using a variety of statistical methods, with each proposed event evaluated by comparing maximum-likelihood phylogenies of the recombinant section with the non-recombinant portion of the dataset. Incongruent phylogenies were identified by comparing the site-wise log-likelihoods of each tree using multiple tests. We also used a phylogenomic approach to identify genes that may have been acquired through horizontal transfer from non-mycobacterial sources. The most frequent associated lineages (and potential gene transfer partners) in the Mycobacterium lineage-restricted gene trees are other members of suborder Corynebacterinae, but more-distant partners were identified as well. In two examined cases of potentially frequent and habitat-directed transfer (M. abscessus to Segniliparus and M. smegmatis to Streptomyces), observed sequence distances were small and consistent with a hypothesis of transfer, while in a third case (M. vanbaalenii to Streptomyces) distances were larger. The analyses described here indicate that whereas evidence of recombination in core regions within the genus is relatively sparse, the acquisition of genes from non-mycobacterial lineages is a significant feature of mycobacterial evolution.


Subject(s)
Evolution, Molecular , Genomics , Mycobacterium/classification , Mycobacterium/genetics , Phylogeny , Recombination, Genetic , Gene Order , Genes, Bacterial , Genome, Bacterial , Homologous Recombination , Humans , Molecular Sequence Annotation , RNA, Ribosomal, 16S
4.
Hum Genomics ; 5(6): 538-68, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22155603

ABSTRACT

Vitamin D has been shown to have anti-angiogenic properties and to play a protective role in several types of cancer, including breast, prostate and cutaneous melanoma. Similarly, vitamin D levels have been shown to be protective for risk of a number of conditions, including cardiovascular disease and chronic kidney disease, as well as numerous autoimmune disorders such as multiple sclerosis, inflammatory bowel diseases and type 1 diabetes mellitus. A study performed by Parekh et al. was the first to suggest a role for vitamin D in age-related macular degeneration (AMD) and showed a correlation between reduced serum vitamin D levels and risk for early AMD. Based on this study and the protective role of vitamin D in diseases with similar pathophysiology to AMD, we examined the role of vitamin D in a family-based cohort of 481 sibling pairs. Using extremely phenotypically discordant sibling pairs, initially we evaluated the association of neovascular AMD and vitamin D/sunlight-related epidemiological factors. After controlling for established AMD risk factors, including polymorphisms of the genes encoding complement factor H (CFH) and age-related maculopathy susceptibility 2/HtrA serine peptidase (ARMS2/HTRA1), and smoking history, we found that ultraviolet irradiance was protective for the development of neovascular AMD (p = 0.001). Although evaluation of serum vitamin D levels (25-hydroxyvitamin D [25(OH)D]) was higher in unaffected individuals than in their affected siblings, this finding did not reach statistical significance. Based on the relationship between ultraviolet irradiance and vitamin D production, we employed a candidate gene approach for evaluating common variation in key vitamin D pathway genes (the genes encoding the vitamin D receptor [VDR]; cytochrome P450, family 27, subfamily B, polypeptide 1 [CYP27B1]; cytochrome P450, family 24, subfamily A, polypeptide 1 [CYP24A1]; and CYP27A1) in this same family-based cohort. Initial findings were then validated and replicated in the extended family cohort, an unrelated case-control cohort from central Greece and a prospective nested case-control population from the Nurse's Health Study and Health Professionals Follow-Up Studies, which included patients with all subtypes of AMD for a total of 2,528 individuals. Single point variants in CYP24A1 (the gene encoding the catabolising enzyme of the vitamin D pathway) were demonstrated to influence AMD risk after controlling for smoking history, sex and age in all populations, both separately and, more importantly, in a meta-analysis. This is the first report demonstrating a genetic association between vitamin D metabolism and AMD risk. These findings were also supplemented with expression data from human donor eyes and human retinal cell lines. These data not only extend previous biological studies in the AMD field, but further emphasise common antecedents between several disorders with an inflammatory/immunogenic component such as cardiovascular disease, cancer and AMD.


Subject(s)
Genetic Predisposition to Disease , Macular Degeneration/etiology , Macular Degeneration/pathology , Polymorphism, Genetic/genetics , Systems Biology , Vitamin D Deficiency/complications , Vitamin D/metabolism , Adult , Aged , Aged, 80 and over , Case-Control Studies , Complement Factor H/genetics , Epidemiologic Studies , Female , Follow-Up Studies , Genotype , Greece/epidemiology , Humans , Macular Degeneration/epidemiology , Male , Middle Aged , Prognosis , Prospective Studies , Receptors, Calcitriol/genetics , Risk Factors , Siblings , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/genetics
5.
Hum Biol ; 81(4): 407-26, 2009 Aug.
Article in English | MEDLINE | ID: mdl-20067367

ABSTRACT

In The Aleutian and Commander Islands and Their Inhabitants (Philadelphia: Wistar Institute of Anatomy and Biology, 1945), Hrdlicka proposed a population replacement event in the Aleutian Islands approximately 1,000 years ago based on a perceived temporal shift in cranial morphology. However, the archaeological record indicates cultural, and presumed population, continuity for more than 4,000 years. We use mtDNA haplogroup data in the series of prehistoric eastern Aleutian samples (n = 86) studied craniometrically by Hrdlicka to test alternative hypotheses regarding population continuity or replacement in the region. This molecular characterization, in conjunction with direct dating of individual specimens, provided increased resolution for hypothesis testing. Results indicate an apparent shift in mtDNA haplogroup frequencies in the eastern Aleutians approximately 1,000 years ago, in concert with changes in mortuary practices and isotopic signatures reflecting resource acquisition strategies. The earliest Aleut populations were characterized by a high frequency of haplogroup A, as are most modern populations of the North American arctic. Later prehistoric peoples in the Aleutians were characterized by a high frequency of haplogroup D and a correspondingly lower frequency of haplogroup A, a pattern typified by modern Aleut populations.


Subject(s)
DNA, Mitochondrial/genetics , Genetics, Population , Inuit/genetics , Paleontology , Population Groups/genetics , Alaska , Emigration and Immigration , Gene Frequency , Genome, Mitochondrial , Haplotypes , Humans , Polymerase Chain Reaction , Radiometric Dating
SELECTION OF CITATIONS
SEARCH DETAIL
...