Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.199
Filter
1.
Sci Rep ; 14(1): 15516, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969651

ABSTRACT

The intelligent appearance quality classification method for Auricularia auricula is of great significance to promote this industry. This paper proposes an appearance quality classification method for Auricularia auricula based on the improved Faster Region-based Convolutional Neural Networks (improved Faster RCNN) framework. The original Faster RCNN is improved by establishing a multiscale feature fusion detection model to improve the accuracy and real-time performance of the model. The multiscale feature fusion detection model makes full use of shallow feature information to complete target detection. It fuses shallow features with rich detailed information with deep features rich in strong semantic information. Since the fusion algorithm directly uses the existing information of the feature extraction network, there is no additional calculation. The fused features contain more original detailed feature information. Therefore, the improved Faster RCNN can improve the final detection rate without sacrificing speed. By comparing with the original Faster RCNN model, the mean average precision (mAP) of the improved Faster RCNN is increased by 2.13%. The average precision (AP) of the first-level Auricularia auricula is almost unchanged at a high level. The AP of the second-level Auricularia auricula is increased by nearly 5%. And the third-level Auricularia auricula AP is increased by 1%. The improved Faster RCNN improves the frames per second from 6.81 of the original Faster RCNN to 13.5. Meanwhile, the influence of complex environment and image resolution on the Auricularia auricula detection is explored.


Subject(s)
Deep Learning , Algorithms , Neural Networks, Computer , Image Processing, Computer-Assisted/methods , Humans
2.
J Adv Nurs ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969397

ABSTRACT

AIM: Systematic reviews on interventions for informal caregivers of community-dwelling frail older adults were published over a decade ago and they mistook frailty for other severe age-related conditions like disability and dementia. Therefore, this study aimed to systematically synthesize these interventions supporting these caregivers identified by an acknowledged frailty assessment instrument and to examine their effectiveness on caregiver-related outcomes. DESIGN: Systematic review and meta-analysis. DATA SOURCES: Fourteen electronic databases, grey literature and reference lists were systematically searched for randomized controlled trials (RCTs) and non-randomized controlled trials (NRCTs) from inception to November 3, 2023. METHODS: Methodology quality and risk of bias were assessed. Data were meta-analysed using the Comprehensive Meta-Analysis, version 3.0. Studies and outcomes unsuitable for meta-analysis were summarized by narrative syntheses. RESULTS: Four studies consisting of three RCTs and one NRCT were included involving 350 participants. Interventions for caregivers of frail older adults included multicomponent interventions (n = 3) and education intervention (n = 1). Interventions had a moderate effect on reducing depression and showed nonsignificant effects on caregiver burden, caregiving time or quality of life (QoL). The PEDro scores for RCTs ranged from 6 to 8, indicating good methodologic quality, but were all judged as high risk of bias. The NRCT reported all methodologic aspects and was at low risk of bias. CONCLUSIONS: Few studies focus on interventions targeting caregivers of frail older adults, and their effectiveness may vary by outcomes. This review suggested the potential benefits of these interventions in reducing caregivers' depression. IMPACT: The differential effectiveness by outcomes and high risk of bias of studies implicate that more rigorous studies are warranted.

3.
Foodborne Pathog Dis ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959170

ABSTRACT

Effectively managing foodborne pathogens is imperative in food processing, where probiotics play a crucial role in pathogen control. This study focuses on the Lactiplantibacillus plantarum AR113 and its gene knockout strains, exploring their antimicrobial properties against Escherichia coli O157:H7 and Staphylococcus aureus. Antimicrobial assays revealed that the inhibitory effect of AR113 increases with its growth and the potential bacteriostatic substance is acidic. AR113Δldh, surpassed AR113Δ0273&2024, exhibited a complete absence of bacteriostatic properties, which indicates that lactic acid is more essential than acetic acid in the bacteriostatic effect of AR113. However, the exogenous acid validation test affirmed the equivalent superior bacteriostatic effect of lactic acid and acetic acid. Notably, AR113 has high lactate production and deletion of the ldh gene not only lacks lactate production but also affects acetic production. This underscores the ldh gene's pivotal role in the antimicrobial activity of AR113. In addition, among all the selected knockout strains, AR113ΔtagO and ΔccpA also had lower antimicrobial effects, suggesting the importance of tagO and ccpA genes of AR113 in pathogen control. This study contributes insights into the antimicrobial potential of AR113 and stands as the pioneering effort to use knockout strains for comprehensive bacteriostatic investigations.

4.
Invest Ophthalmol Vis Sci ; 65(8): 3, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38953846

ABSTRACT

Purpose: To investigate the correlation between apparent diffusion coefficient (ADC) histograms and high-risk clinicopathologic features related to uveal melanoma (UM) prognosis. Methods: This retrospective study included 53 patients with UM who underwent diffusion-weighted imaging (DWI) between August 2015 and March 2024. Axial DWI was performed with a single-shot spin-echo echo-planar imaging sequence. ADC histogram parameters of ADCmean, ADC50%, interquartile range (IQR), skewness, kurtosis, and entropy were obtained from DWI. The relationships between histogram parameters and high-risk clinicopathological characteristics including tumor size, preoperative retinal detachment, histological subtypes, Ki-67 index, and chromosome status, were analyzed by Spearman correlation analysis, Mann-Whitney U test, or Kruskal-Wallis test. Results: A total of 53 patients (mean ± SD age, 55 ± 15 years; 22 men) were evaluated. The largest basal diameter (LBD) was correlated with kurtosis (r = 0.311, P = 0.024). Tumor prominence (TP) was correlated with entropy (r = 0.581, P < 0.001) and kurtosis (r = 0.273, P = 0.048). Additionally, significant correlations were identified between the Ki-67 index and ADCmean (r = -0.444, P = 0.005), ADC50% (r = -0.487, P = 0.002), and skewness (r = 0.394, P = 0.014). Finally, entropy was correlated with monosomy 3 (r = 0.541, P = 0.017). Conclusions: The ADC histograms provided valuable insights into high-risk clinicopathologic features of UM and hold promise in the early prediction of UM prognosis.


Subject(s)
Diffusion Magnetic Resonance Imaging , Melanoma , Uveal Neoplasms , Humans , Uveal Neoplasms/pathology , Uveal Neoplasms/genetics , Male , Female , Middle Aged , Melanoma/pathology , Retrospective Studies , Prognosis , Diffusion Magnetic Resonance Imaging/methods , Adult , Aged , Echo-Planar Imaging/methods
5.
Angew Chem Int Ed Engl ; : e202411512, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38988004

ABSTRACT

Overcoming the trade-off between short-circuited current (Jsc) and open-circuited voltage (Voc) is important to achieving high-efficiency organic solar cells (OSCs). Previous works modulated energy gap between Frenkel local exciton (LE) and charge-transfer (CT) exciton, which is served as driving force of exciton splitting. Differently, our current work focuses on modulation of LE-CT excitonic coupling (tLE-CT) via a simple but effective strategy that the 2-chlorothiophene (2Cl-Th) solvent is utilized in treatment of OSC active-layer films. The results of our experimental measurements and theoretical simulations demonstrated that 2Cl-Th solvent initiates the tighter intermolecular interactions with non-fullerene acceptor in comparison with that of traditional chlorobenzene solvent, thus suppressing the acceptor's over-aggregation and retarding the acceptor crystallization with reduced trap. Importantly, the resulted shorter distances between donor and acceptor molecules in the 2Cl-Th treated blend efficiently strengthen tLE-CT, which not only promotes the exciton splitting but also reduces non-radiative recombination. The champion efficiencies of 19.8% (small-area) with a superior operational reliability (T80: 586 hours) and 17.0% (large-area) were yielded in 2Cl-Th treated cells. This work provided a new insight into modulating the exciton dynamics to overcome the trade-off between Jsc and Voc, which can productively promote the development of OSC field.

6.
J Genet Genomics ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996840

ABSTRACT

Genetic lineage tracing has been widely employed to investigate cell lineages and fate. However, conventional reporting systems often label the entire cytoplasm, making it challenging to discern cell boundaries. Additionally, single Cre-loxP recombination systems have limitations in tracing specific cell populations. This study proposes three reporting systems that utilize Cre, Dre and Dre + Cre mediated recombination. These systems incorporate tdTomato expression on the cell membrane and PhiYFP expression within the cell nucleus, allowing for clear observation of the cell nucleus and membrane. The efficacy of these systems is successfully demonstrated by labeling cardiomyocytes and hepatocytes. The potential for dynamic visualization of the cell membrane is showcased using intravital imaging microscopy or three-dimensional imaging. Furthermore, by combining this dual recombinase system with the ProTracer system, hepatocyte proliferation is traced with enhanced precision. This reporting system holds significant importance in advancing the understanding of cell fate studies in development, homeostasis, and diseases.

7.
Invest Ophthalmol Vis Sci ; 65(8): 11, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38967943

ABSTRACT

Purpose: Ocular melanoma is a common primary malignant ocular tumor in adults with limited effective treatments. Epigenetic regulation plays an important role in tumor development. The switching/sucrose nonfermentation (SWI/SNF) chromatin remodeling complex and bromodomain and extraterminal domain family proteins are epigenetic regulators involved in several cancers. We aimed to screen a candidate small molecule inhibitor targeting these regulators and investigate its effect and mechanism in ocular melanoma. Methods: We observed phenotypes caused by knockdown of the corresponding gene and synergistic effects with BRD inhibitor treatment and SWI/SNF complex knockdown. The effect of JQ-1 on ocular melanoma cell cycle and apoptosis was analyzed with flow cytometry. Via RNA sequencing, we also explored the mechanism of BRD4. Results: The best tumor inhibitory effect was observed for the BRD4 inhibitor (JQ-1), although there were no statistically obvious changes in the shBRD4 and shBRD9 groups. Interestingly, the inhibitory effect of JQ-1 was decrease in the shBRD4 group. JQ-1 inhibits the growth of melanoma in various cell lines and in tumor-bearing mice. We found 17 of these 28 common differentially expressed genes were downregulated after MEL270 and MEL290 cells treated with JQ-1. Four of these 17 genes, TP53I11, SH2D5, SEMA5A, and MDGA1, were positively correlated with BRD4. In TCGA database, low expression of TP53I11, SH2D5, SEMA5A, and MDGA1 improved the overall survival rate of patients. Furthermore, the disease-free survival rate was increased in the groups with low expression of TP53I11, SH2D5, and SEMA5A. Conclusions: JQ-1 may act downstream of BRD4 and suppress ocular melanoma growth by inducing G1 cell cycle arrest.


Subject(s)
Apoptosis , Azepines , Cell Cycle Checkpoints , Cell Cycle Proteins , Melanoma , Transcription Factors , Triazoles , Animals , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Mice , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Azepines/pharmacology , Triazoles/pharmacology , Triazoles/therapeutic use , Cell Cycle Checkpoints/drug effects , Apoptosis/drug effects , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic , Uveal Neoplasms/drug therapy , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology , Uveal Neoplasms/metabolism , Flow Cytometry , Xenograft Model Antitumor Assays , Mice, Nude , Bromodomain Containing Proteins
8.
Microb Pathog ; 194: 106795, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019122

ABSTRACT

Feline coronavirus (FCoV) infection is a leading cause of death in cats. In this study, we produced FCoV-I virus-like particles (VLPs) containing E, M, N, and S proteins using a baculovirus expression system and mixed VLPs with the adjuvants MF59 and CpG 55.2 to prepare an VLP/MF59/CpG vaccine. After immunization of mice with the vaccine, IgG specific antibodies titers against S and N proteins increased to 1:12,800, and IFN-γ+ and IL-4+ splenocytes were significantly increased. Following immunization of FCoV-negative cats, the S protein antibodies in immunized cats (5/5) increased significantly, with a peak of 1:12,800. Notably, after booster vaccination in FCoV-positive cats, a significant reduction in viral load was observed in the feces of partial cats (4/5), and the FCoV-I negative conversion was found in two immunized cats (2/5). Therefore, the VLP/MF59/CpG vaccine is a promising candidate vaccine to prevent the FCoV infection.

9.
Sci Total Environ ; 946: 174448, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38969120

ABSTRACT

Afforestation is a crucial pathway for ecological restoration and has the potential to modify soil microbial community, thereby impacting the cycling and accumulation of carbon in soil across diverse patterns. However, the overall patterns of how afforestation impacts below-ground carbon cycling processes remain uncertain. In this comprehensive meta-analysis, we systematically evaluated 7045 observations from 210 studies worldwide to evaluate the influence of afforestation on microbial communities, enzyme activities, microbial functions, and associated physicochemical properties of soils. Afforestation increases microbial biomass, carbon and nitrogen hydrolase activities, and microbial respiration, but not carbon oxidase activity and nitrogen decomposition rate. Conversely, afforestation leads to a reduction in the metabolic quotient, with significant alteration of bacterial and fungal community structures and positive effects on the fungi: bacteria ratio rather than alpha and beta diversity metrics. We found a total 77 % increase in soil organic carbon (SOC) content after afforestation, which varied depending on initial SOC content before afforestation, afforestation stand age, and aridity index of afforestation sites. The modified SOC is associated with bacterial community composition along with intracellular metabolic quotient and extracellular carbon degrading enzyme activity playing a role. These findings provide insights into the pathways through which afforestation affects carbon cycling via microorganisms, thus improving our knowledge of soil carbon reservoir's responses to afforestation under global climate change.


Subject(s)
Carbon , Forests , Soil Microbiology , Soil , Carbon/analysis , Carbon Cycle , Climate Change , Environmental Restoration and Remediation/methods , Microbiota , Soil/chemistry
10.
J Sci Food Agric ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984980

ABSTRACT

BACKGROUND: Human serum albumin (HSA) is the most abundant protein in plasma, playing crucial roles in regulating osmotic pressure and maintaining protein homeostasis. It is widely applied in the clinical treatment of various diseases. HSA can be purified from plasma or produced using recombinant DNA technology. Due to the improved efficiency and reduced costs, a growing body of research has focused on enhancing albumin production through bacterial strain overexpression. However, there have been few studies on the effect of albumin on the characteristics of the overexpressing-strain itself, particularly stress resistance. In this study, we utilized Lactiplantibacillus plantarum (L. plantarum) AR113 as the expression host and successfully constructed the albumin overexpression strain AR113-pLLY01 through gene editing technology. The successful expression of albumin was achieved and subsequently compared with the wild-type strain AR113-pIB184. RESULTS: The results demonstrated that the survival rate of AR113-pLLY01 was also significantly better than that of AR113-pIB184 after lyophilization. In addition, AR113-pLLY01 exhibited a significantly better protective effect than AR113-pIB184 at pH 3, indicating that albumin possesses a certain tolerance to acidic stress. At bile salt concentrations higher than 0.03%, both strains showed limited growth, but at a concentration of 0.02%, AR113-pLLY01 had a significant protective effect. CONCLUSION: This study suggest that albumin can improve strain tolerance, which has significant implications for future applications. © 2024 Society of Chemical Industry.

11.
Mol Microbiol ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38922722

ABSTRACT

An arsenate reductase (Car1) from the Bacteroidetes species Rufibacter tibetensis 1351T was isolated from the Tibetan Plateau. The strain exhibits resistance to arsenite [As(III)] and arsenate [As(V)] and reduces As(V) to As(III). Here we shed light on the mechanism of enzymatic reduction by Car1. AlphaFold2 structure prediction, active site energy minimization, and steady-state kinetics of wild-type and mutant enzymes give insight into the catalytic mechanism. Car1 is structurally related to calcineurin-like metallophosphoesterases (MPPs). It functions as a binuclear metal hydrolase with limited phosphatase activity, particularly relying on the divalent metal Ni2+. As an As(V) reductase, it displays metal promiscuity and is coupled to the thioredoxin redox cycle, requiring the participation of two cysteine residues, Cys74 and Cys76. These findings suggest that Car1 evolved from a common ancestor of extant phosphatases by incorporating a redox function into an existing MPP catalytic site. Its proposed mechanism of arsenate reduction involves Cys74 initiating a nucleophilic attack on arsenate, leading to the formation of a covalent intermediate. Next, a nucleophilic attack of Cys76 leads to the release of As(III) and the formation of a surface-exposed Cys74-Cys76 disulfide, ready for reduction by thioredoxin.

12.
Water Res ; 260: 121949, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38901315

ABSTRACT

As an important reservoir of antibiotic resistance genes (ARGs), the sludge discharged from wastewater treatment plants is the key intermediate for ARG transport into the environment. Bdellovibrio-and-like organisms (BALOs) are predatory bacteria that are expected to attack antibiotic-resistant bacteria (ARB). In this study, the screened BALOs (C3 & D15) were mixed with the sludge for biolysis to achieve the satisfying removal efficiencies of six tet genes, two sul genes, and one mobile genetic element (intl 1). Among them, tet(Q) demonstrated the highest reduction rate in relative abundance at 87.3 ± 1.0 %, while tet(X) displayed the lowest of 11.7 ± 0.2 %. The microorganisms, including Longilinea, Methanobacterium, Acetobacterium, Sulfurimonas, allobaculum, Gaiella, AAP99, Ellin6067, Rhodoferax, Ferruginibacter and Thermomonas, were expected to play a dual role in the reduction of ARGs by serving as ARB and BALOs' preferred prey. Meanwhile, BALOs consortium improved ARGs reduction efficiency via the expansion of the prey profile. Additionally, BALOs decreased the relative abundance of not only pathogens (Shinella, Rickettsia, Burkholderia, Acinetobacter, Aeromonas, Clostridium, Klebsiella and Pseudomonas), but also the ARGs' host pathogens (Mycobacterium, Plesiocystis, Burkholderia, and Bacteroides). Therefore, the application of BALOs for sludge biolysis are promising to decrease the sludge's public health risks via limiting the spread of ARGs and pathogens into the environment.

13.
J Colloid Interface Sci ; 673: 836-846, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38908283

ABSTRACT

Covalent organic frameworks (COFs) have gained considerable interest as candidate photocatalysts for hydrogen evolution. In this work, we synthesized ß-keto-enamine-based COFs (TpPa-X, TpDB, and TpDTP) to explore the relations between structures and photocatalytic hydrogen evolution. COFs were divided into two groups: (1) TpPa-X with different substituents attached to the TpPa backbone and (2) COFs featuring diamine linkers of varied lengths (TpDB and TpDTP). Experiments and density functional theory (DFT) calculations show that moderate hydrophobicity is favorable for the photocatalytic hydrogen evolution process, and acceptable contact angles are anticipated to range from 65° to 80°. Naturally, there are comprehensive factors that affect photocatalytic reactions, and the regulation of different backbones and substituents can considerably affect the performance of COFs for photocatalytic hydrogen evolution in terms of electronic structure, specific surface area, surface wettability, carrier separation efficiency, and hydrogen dissociation energy. Results show that TpPa-Cl2 (TpPa-X, X  = Cl2) demonstrates the highest photocatalytic activity, approximately 14.51 mmol g-1h-1, with an apparent quantum efficiency of 4.62 % at 420 nm. This work provides guidance for designing efficient COF-based photocatalysts.

14.
Nutrients ; 16(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892694

ABSTRACT

Certain workplaces, like deep-sea voyages, subject workers to chronic psychological stress and circadian rhythm disorders due to confined environments and frequent shifts. In this study, participants lived in a strictly controlled confined environment, and we analyzed the effects of a confined environment on gut microbiota and metabolites. The results showed that living in confined environments can significantly alter both the gut microbiota and the gut metabolome, particularly affecting lipid metabolism pathways like glycerophospholipid metabolism. There was a significant reduction in the abundance of Faecalibacterium and Bacteroides, while Blautia, Bifidobacterium, and Collinsella showed significant increases. An association analysis revealed a strong correlation between changes in the gut microbiota and the metabolome. Four upregulated lipid metabolites may serve as biomarkers for damage induced by confined environments, and certain gut microbiota alterations, such as those involving Faecalibacterium and Bacteroides, could be potential psychobiotics or therapeutic targets for enhancing mental health in a confined environment.


Subject(s)
Gastrointestinal Microbiome , Metabolome , Humans , Gastrointestinal Microbiome/physiology , Male , Adult , Lipid Metabolism , Bacteroides/metabolism , Female , Stress, Psychological/microbiology , Stress, Psychological/metabolism , Feces/microbiology , Bacteria/metabolism , Bacteria/classification
15.
BMC Biol ; 22(1): 132, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38835016

ABSTRACT

BACKGROUND: ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is thought to play a significant role both in tumor suppression and tumor initiation, which is highly dependent upon context. Previous studies have suggested that ARID1A deficiency may contribute to cancer development. The specific mechanisms of whether ARID1A loss affects tumorigenesis by RNA editing remain unclear. RESULTS: Our findings indicate that the deficiency of ARID1A leads to an increase in RNA editing levels and alterations in RNA editing categories mediated by adenosine deaminases acting on RNA 1 (ADAR1). ADAR1 edits the CDK13 gene at two previously unidentified sites, namely Q113R and K117R. Given the crucial role of CDK13 as a cyclin-dependent kinase, we further observed that ADAR1 deficiency results in changes in the cell cycle. Importantly, the sensitivity of ARID1A-deficient tumor cells to SR-4835, a CDK12/CDK13 inhibitor, suggests a promising therapeutic approach for individuals with ARID1A-mutant tumors. Knockdown of ADAR1 restored the sensitivity of ARID1A deficient cells to SR-4835 treatment. CONCLUSIONS: ARID1A deficiency promotes RNA editing of CDK13 by regulating ADAR1.


Subject(s)
Adenosine Deaminase , Cyclin-Dependent Kinases , DNA-Binding Proteins , RNA Editing , RNA-Binding Proteins , Transcription Factors , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Cell Line, Tumor , CDC2 Protein Kinase
16.
Vaccines (Basel) ; 12(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38932358

ABSTRACT

Classical swine fever (CSF), caused by the classical swine fever virus (CSFV), results in significant economic losses to the swine industry in many countries. Vaccination represents the primary strategy to control CSF and the CSFV E2 protein is known as the major protective antigen. However, the E2 protein expressed or presented by different systems elicits distinct immune responses. In this study, we established a stable CHO cell line to express the E2 protein and delivered it using self-assembled ferritin nanoparticles (NPs). Subsequently, we compared the adaptive immune responses induced by the E2-ferritin NPs and the monomeric E2 protein produced by the CHO cells or a baculovirus expression system. The results revealed that the NP-delivered E2 protein elicited higher titers of neutralizing antibodies than did the monomeric E2 protein in pigs. Importantly, only the NP-delivered E2 protein significantly induced CSFV-specific IFN-γ-secreting cells. Furthermore, all the pigs inoculated with the E2-ferritin NPs were completely protected from a lethal CSFV challenge infection. These findings demonstrate the ability of the E2-ferritin NPs to protect pigs against the lethal CSFV challenge by eliciting robust humoral and cellular immune responses.

17.
J Food Drug Anal ; 32(2): 140-154, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38934689

ABSTRACT

As cancer continues to rise globally, there is growing interest in discovering novel methods for prevention and treatment. Due to the limitations of traditional cancer therapies, there has been a growing emphasis on investigating herbal remedies and exploring their potential synergistic effects when combined with chemotherapy drugs. Cinnamaldehyde, derived from cinnamon, has gained significant attention for its potential role in cancer prevention and treatment. Extensive research has demonstrated that cinnamaldehyde exhibits promising anticancer properties by modulating various cellular processes involved in tumor growth and progression. However, challenges and unanswered questions remain regarding the precise mechanisms for its effective use as an anticancer agent. This article aims to explore the multifaceted effects of cinnamaldehyde on cancer cells and shed light on these existing issues. Cinnamaldehyde has diverse anti-cancer mechanisms, including inducing apoptosis by activating caspases and damaging mitochondrial function, inhibiting tumor angiogenesis, anti-proliferation, anti-inflammatory and antioxidant. In addition, cinnamaldehyde also acts as a reactive oxygen species scavenger, reducing oxidative stress and preventing DNA damage and genomic instability. This article emphasizes the promising therapeutic potential of cinnamaldehyde in cancer treatment and underscores the need for future research to unlock novel mechanisms and strategies for combating cancer. By providing valuable insights into the role and mechanism of cinnamaldehyde in cancer, this comprehensive understanding paves the way for its potential as a novel therapeutic agent. Overall, cinnamaldehyde holds great promise as an anticancer agent, and its comprehensive exploration in this article highlights its potential as a valuable addition to cancer treatment options.


Subject(s)
Acrolein , Neoplasms , Acrolein/analogs & derivatives , Acrolein/pharmacology , Acrolein/chemistry , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , DNA Damage/drug effects , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism
18.
Ecotoxicol Environ Saf ; 280: 116569, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38878331

ABSTRACT

Manganese (Mn) exposure is a common environmental risk factor for Parkinson's disease (PD), with pathogenic mechanisms associated with dopaminergic neuron damage and neuroinflammation. Mesenchymal stem cells (MSCs)-derived small extracellular vesicles (sEVs) have emerged as a novel therapeutic approach for neural damage repair. The functional sEVs released from MSCs when they are induced into dopaminergic progenitors may have a better repair effect on neural injury. Therefore, we collected sEVs obtained from primary human nasal mucosal mesenchymal stem cells (hnmMSC-sEVs) or cells in the process of dopaminergic progenitor cell differentiation (da-hnmMSC-sEVs), which were cultured in a 3D dynamic system, and observed their repair effects and mechanisms of Mn-induced neural damage by intranasal administration of sEVs. In Mn-exposed mice, sEVs could reach the site of brain injury after intranasal administration, da-hnmMSC enhanced the repair effects of sEVs in neural damage and behavioral competence, as evidenced by restoration of motor dysfunction, enhanced neurogenesis, decreased microglia activation, up-regulation of anti-inflammatory factors, and down-regulation of pro-inflammatory factors. The transcriptomics of hnmMSC-sEVs and da-hnmMSC-sEVs revealed that miRNAs, especially miR-494-3p in sEVs were involved in neuroprotective and anti-inflammatory effects. Overexpression of miR-494-3p in sEVs inhibited Mn-induced inflammation and neural injury, and its repair mechanism might be related to the down-regulation of CMPK2 and NLRP3 in vitro experiments. Thus, intranasal delivery of da-hnmMSC-sEVs is an effective strategy for the treatment of neural injury repair.


Subject(s)
Cell Differentiation , Dopaminergic Neurons , Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Nasal Mucosa , Animals , MicroRNAs/genetics , Mice , Humans , Cell Differentiation/drug effects , Dopaminergic Neurons/drug effects , Manganese/toxicity , Male , Administration, Intranasal , Cells, Cultured , Mice, Inbred C57BL
19.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119766, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823528

ABSTRACT

BACKGROUND: Interstitial cystitis/bladder pain syndrome (IC/BPS) is a bladder syndrome of unknown etiology. Reactive oxygen species (ROS) plays a major role in ferroptosis and bladder dysfunction of IC/BPS, while the role of ferroptosis in IC/BPS progression is still unclear. This study aims to investigate the role and mechanism of ROS-induced ferroptosis in IC/BPS using cell and rat model. METHODS: We collected IC/BPS patient bladder tissue samples and established a LPS-induced IC/BPS rat model (LRM). The level of oxidative stress and ferroptosis in IC/BPS patients and LRM rats was analyzed. Function and regulatory mechanism of ferroptosis in IC/BPS were explored by in vitro and in vivo experiments. RESULTS: The patients with IC/BPS showed mast cells and inflammatory cells infiltration in bladder epithelial tissues. Expression of NRF2 was up-regulated, and GPX4 was decreased in IC/BPS patients compared with normal tissues. IC model cells underwent oxidative stress, which induced ferroptosis. These above results were validated in LRM rat models, and inhibition of ferroptosis ameliorated bladder dysfunction in LRM rats. Wnt/ß-catenin signaling was deactivated in IC/BPS patients and animals, and activation of Wnt/ß-catenin signaling reduced cellular free radical production, thereby inhibited ferroptosis in IC model cells. Mechanistically, the Wnt/ß-catenin signaling pathway inhibited oxidative stress-induced ferroptosis by down-regulating NF-κB, thus contributing to recover IC/BPS both in vitro and in vivo. CONCLUSIONS: We demonstrate for the first time that oxidative stress-induced ferroptosis plays an important role in the pathology of IC/BPS. Mechanistically, the Wnt/ß-catenin signaling suppressed oxidative stress-induced ferroptosis by down-regulating NF-κB to improve bladder injury in IC/BPS.

20.
J Mol Model ; 30(7): 204, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861191

ABSTRACT

CONTEXT: Freon, a greenhouse gas that contributes to the depletion of the ozone layer, has been the subject of investigation in this study. The catalytic hydrolysis enhancement of CFC-12 by ZrO2 was examined using a density functional theory approach. A detailed reaction mechanism and a new reaction pathway were proposed. The study found that CFC-12 is more likely to be adsorbed on the ZrO2 surface in the CFC-12-TO(F) configuration, while H2O is more likely to be adsorbed on the ZrO2 surface in the H2O-TO(H) configuration. Additionally, H2O replaces CFC-12 on the surface of ZrO2. The hydrolysis of CFC-12 is primarily determined by the first dechlorination process, while the defluorination process is comparatively easier. ZrO2 has a catalytic effect on both dechlorination and defluorination processes, with a more pronounced effect on the former. The production of C-OH bonds is inhibited, which facilitates the dechlorination and defluoridation processes. METHODS: This work was carried out in the Dmol3 program in the Material Studio 2017, including the geometric structure optimization and energy calculations. The GGA/PBE method was used in this work, along with the DNP basis, spin-polarized set, and DFT-D correction. The possible TSs were guessed based on the linear synchronous transit/quadratic synchronous transit/conjugate gradient (LST/QST/CG) method, and they were further confirmed and reoptimized to ensure that the only one imaginary frequency exists in the TSs.

SELECTION OF CITATIONS
SEARCH DETAIL