Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
World J Clin Cases ; 10(34): 12623-12630, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36579105

ABSTRACT

BACKGROUND: Chronic intestinal pseudo-obstruction (CIPO) is a syndrome of intestinal motor dysfunction caused by intestinal nerve, muscle, and/or Cajal stromal cell lesions. CIPO is a serious category of gastrointestinal dynamic dysfunction, which can eventually lead to the death of patients with intestinal failure. Due to considerable phenotypic heterogeneity, the estimated incidence of CIPO is 1/476190 and 1/416666 in men and women, respectively. According to the etiology, CIPO can be divided into idiopathic and secondary, of which the latter is the most common, often secondary to tumor, virus infection, connective tissue disease, neurological diseases, and endocrine diseases. Idiopathic CIPO in the intestinal tract is divided into visceral myopathy, neuropathy, and stromal cell lesions according to the location. Surgery is usually not recommended for CIPO, because it often does not benefit patients with CIPO, and postoperative intestinal obstruction is likely to occur, which may even worsen the condition. CASE SUMMARY: Here, we describe the case of a 43-year-old male Han Chinese patient with a 15-year history of recurrent abdominal distention with no clear cause. The results of physical, biochemical, and other relevant examinations showed no clear abnormalities. Contrast-enhanced computed tomography (CT) indicated a large duodenum, clear expansion of the intestinal lumen, and CIPO. Whole exome sequencing (WES) of the patient and his mother confirmed the diagnosis of primary familial visceral myopathy type 2 chronic pseudoileus with a rare heterozygous gene mutation in MYH11. This is the second reported case of CIPO with a heterozygous MYH11 [NM_001040113.1: c.5819delC (p.Pro1940Hisfs*91)] mutation. CONCLUSION: This case report indicates that physicians can perform routine clinical examinations, CT, and WES to achieve a diagnosis and treatment of CIPO in early disease stages.

2.
Front Endocrinol (Lausanne) ; 13: 1068555, 2022.
Article in English | MEDLINE | ID: mdl-36589810

ABSTRACT

Objective: Codonopsis Radix and Polygonati Rhizoma (CRPR) has a good hypoglycemic effect. The aims of the present study were to investigate the effect of CRPR on high-fat/high-sugar diet (HFHSD)- and streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) mice as well as to investigate the involved mechanism. Methods: A T2DM mouse model was generated by combining HFHSD and STZ. After the model was established, normal and model groups received the same volume of normal saline intragastrically, and the negative control group was treated with metformin (200 mg/kg·BW). The low, medium, and high CRPR groups received four consecutive weeks of oral gavage with CRPR doses of 2.5, 5, and 10 g/kg·BW, respectively, during the course of the study. Body weight and fasting blood glucose (FBG) were measured on a weekly basis. Enzyme-linked immunosorbent assay (ELISAs) were used to evaluate the serum and liver samples. Hematoxylin and eosin (H&E) staining was utilized to observe the pathological status of the liver and pancreas. Western blot (WB) analysis was performed to evaluate the protein expression levels of PI3K, p-PI3K, AKT, and p-AKT. Results: Compared to model mice, each treatment group had significantly elevated levels of FBG, total cholesterol (TC), and triacylglycerol (TG) (P<0.01 and P<0.05, respectively). The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly reduced in the treatment groups compared to the model group (P<0.01). Compared to the model group, fasting insulin (FINS) levels were elevated in all groups of CRPR (P<0.05), and there were significantly higher levels of high-density lipoprotein cholesterol (HDL-C) in both the low-dose and high-dose CRPR groups (P<0.05). H&E staining indicated that CRPR treatment reduced organ enlargement, improved liver lipid accumulation, and repaired islet injury in T2DM mice. Moreover, WB analysis demonstrated that all CRPR groups significantly upregulated the protein expression of IRS1, p-GSK3ß, PI3K, p-Akt and p-FOXO1(P<0.05) as well as significantly downregulated p-IRS1 and FOXO1 protein expression (P<0.05). Conclusion: The present study demonstrated that CRPR effectively improves the metabolic disturbance of lipids, repairs damaged liver tissues, repairs damaged pancreatic tissues, and reduces insulin resistance (IR) in T2DM mice. The mechanism of action may be associated with upregulation of the IRS1/PI3K/AKT signaling pathway and inhibition of IRS1 phosphorylation.


Subject(s)
Codonopsis , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Diabetes Mellitus, Type 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Codonopsis/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Signal Transduction , Cholesterol/adverse effects
3.
Neural Regen Res ; 14(10): 1796-1804, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31169198

ABSTRACT

The rat high-impact free weight drop model mimics the diffuse axonal injury caused by severe traumatic brain injury in humans, while severe controlled cortical impact can produce a severe traumatic brain injury model using precise strike parameters. In this study, we compare the pathological mechanisms and pathological changes between two rat severe brain injury models to identify the similarities and differences. The severe controlled cortical impact model was produced by an electronic controlled cortical impact device, while the severe free weight drop model was produced by dropping a 500 g free weight from a height of 1.8 m through a plastic tube. Body temperature and mortality were recorded, and neurological deficits were assessed with the modified neurological severity score. Brain edema and blood-brain barrier damage were evaluated by assessing brain water content and Evans blue extravasation. In addition, a cytokine array kit was used to detect inflammatory cytokines. Neuronal apoptosis in the brain and brainstem was quantified by immunofluorescence staining. Both the severe controlled cortical impact and severe free weight drop models exhibited significant neurological impairments and body temperature fluctuations. More severe motor dysfunction was observed in the severe controlled cortical impact model, while more severe cognitive dysfunction was observed in the severe free weight drop model. Brain edema, inflammatory cytokine changes and cortical neuronal apoptosis were more substantial and blood-brain barrier damage was more focal in the severe controlled cortical impact group compared with the severe free weight drop group. The severe free weight drop model presented with more significant apoptosis in the brainstem and diffused blood-brain barrier damage, with higher mortality and lower repeatability compared with the severe controlled cortical impact group. Severe brainstem damage was not found in the severe controlled cortical impact model. These results indicate that the severe controlled cortical impact model is relatively more stable, more reproducible, and shows obvious cerebral pathological changes at an earlier stage. Therefore, the severe controlled cortical impact model is likely more suitable for studies on severe focal traumatic brain injury, while the severe free weight drop model may be more apt for studies on diffuse axonal injury. All experimental procedures were approved by the Ethics Committee of Animal Experiments of Tianjin Medical University, China (approval No. IRB2012-028-02) in February 2012.

SELECTION OF CITATIONS
SEARCH DETAIL