Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Cell Death Dis ; 13(1): 8, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34923573

ABSTRACT

While apoptosis plays a significant role in intestinal homeostasis, it can also be pathogenic if overactive during recovery from inflammation. We recently reported that microRNA-24-3p (miR-24-3p) is elevated in the colonic epithelium of ulcerative colitis patients during active inflammation, and that it reduced apoptosis in vitro. However, its function during intestinal restitution following inflammation had not been examined. In this study, we tested the influence of miR-24-3p on mucosal repair by studying recovery from colitis in both novel miR-24-3p knockout and miR-24-3p-inhibited mice. We observed that knockout mice and mice treated with a miR-24-3p inhibitor had significantly worsened recovery based on weight loss, colon length, and double-blinded histological scoring. In vivo and in vitro analysis of miR-24-3p inhibition in colonic epithelial cells revealed that inhibition promotes apoptosis and increases levels of the pro-apoptotic protein BIM. Further experiments determined that silencing of BIM reversed the pro-apoptotic effects of miR-24-3p inhibition. Taken together, these data suggest that miR-24-3p restrains intestinal epithelial cell apoptosis by targeting BIM, and its loss of function is detrimental to epithelial restitution following intestinal inflammation.


Subject(s)
Drug Delivery Systems/methods , Epithelial Cells/metabolism , Inflammation/genetics , Intestines/pathology , MicroRNAs/metabolism , Animals , Apoptosis , Humans , Inflammation/pathology , Male , Mice , Mice, Knockout , Transfection
3.
Gastroenterology ; 160(7): 2409-2422.e19, 2021 06.
Article in English | MEDLINE | ID: mdl-33617890

ABSTRACT

BACKGROUND & AIMS: Alterations in microRNA (miRNA) and in the intestinal barrier are putative risk factors for irritable bowel syndrome (IBS). We aimed to identify differentially expressed colonic mucosal miRNAs, their targets in IBS compared to healthy controls (HCs), and putative downstream pathways. METHODS: Twenty-nine IBS patients (15 IBS with constipation [IBS-C], 14 IBS with diarrhea [IBS-D]), and 15 age-matched HCs underwent sigmoidoscopy with biopsies. A nCounter array was used to assess biopsy specimen-associated miRNA levels. A false discovery rate (FDR) < 10% was considered significant. Real-time polymerase chain reaction (PCR) was used to validate differentially expressed genes. To assess barrier function, trans-epithelial electrical resistance (TEER) and dextran flux assays were performed on Caco-2 intestinal epithelial cells that were transfected with miRNA-inhibitors or control inhibitors. Protein expression of barrier function associated genes was confirmed using western blots. RESULTS: Four out of 247 miRNAs tested were differentially expressed in IBS compared to HCs (FDR < 10%). Real-time PCR validation suggested decreased levels of miR-219a-5p and miR-338-3p in IBS (P = .026 and P = .004), and IBS-C (P = .02 and P = .06) vs. HCs as the strongest associations. Inhibition of miR-219a-5p resulted in altered expression of proteasome/barrier function genes. Functionally, miR-219a-5p inhibition enhanced the permeability of intestinal epithelial cells as TEER was reduced (25-50%, P < .05) and dextran flux was increased (P < .01). Additionally, inhibition of miR-338-3p in cells caused alterations in the mitogen-activated protein kinase (MAPK) signaling pathway genes. CONCLUSION: Two microRNAs that potentially affect permeability and visceral nociception were identified to be altered in IBS patients. MiR-219a-5p and miR-338-3p potentially alter barrier function and visceral hypersensitivity via neuronal and MAPK signaling and could be therapeutic targets in IBS.


Subject(s)
Down-Regulation/genetics , Irritable Bowel Syndrome/genetics , MAP Kinase Signaling System/genetics , MicroRNAs/metabolism , Adolescent , Adult , Case-Control Studies , Colon/metabolism , Constipation/genetics , Diarrhea/genetics , Female , Humans , Intestinal Mucosa/metabolism , Irritable Bowel Syndrome/complications , Male , Middle Aged , Permeability , Young Adult
4.
Am J Pathol ; 189(9): 1763-1774, 2019 09.
Article in English | MEDLINE | ID: mdl-31220450

ABSTRACT

Inflammatory bowel disease is characterized by high levels of inflammation and loss of barrier integrity in the colon. The intestinal barrier is a dynamic network of proteins that encircle intestinal epithelial cells. miRNAs regulate protein-coding genes. In this study, miR-24 was found to be elevated in colonic biopsies and blood samples from ulcerative colitis (UC) patients compared with healthy controls. In the colon of UC patients, miR-24 is localized to intestinal epithelial cells, which prompted an investigation of intestinal epithelial barrier function. Two intestinal epithelial cell lines were used to study the effect of miR-24 overexpression on barrier integrity. Overexpression of miR-24 in both cell lines led to diminished transepithelial electrical resistance and increased dextran flux, suggesting an effect on barrier integrity. Overexpression of miR-24 did not induce apoptosis or affect cell proliferation, suggesting that the effect of miR-24 on barrier function was due to an effect on cell-cell junctions. Although the tight junctions in cells overexpressing miR-24 appeared normal, miR-24 overexpression led to a decrease in the tight junction-associated protein cingulin. Loss of cingulin compromised barrier formation; cingulin levels negatively correlated with disease severity in UC patients. Together, these data suggest that miR-24 is a significant regulator of intestinal barrier that may be important in the pathogenesis of UC.


Subject(s)
Cell Membrane Permeability , Colitis, Ulcerative/pathology , Epithelial Cells/pathology , Intestines/pathology , MicroRNAs/genetics , Tight Junctions/pathology , Apoptosis , Cell Proliferation , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Epithelial Cells/metabolism , Humans , Tight Junctions/metabolism
5.
Mol Cancer Ther ; 17(7): 1430-1440, 2018 07.
Article in English | MEDLINE | ID: mdl-29703843

ABSTRACT

Bladder cancer represents a disease associated with significant morbidity and mortality. MiR-21 has been found to have oncogenic activity in multiple cancers, including bladder cancer, whereas inhibition of its expression suppresses tumor growth. Here, we examine the molecular network regulated by miR-21 in bladder cancer and evaluate the effects of i.v. and i.p. administration of a novel miR-21 chemical inhibitor in vivo LNA miR-21 reduced the oncogenic potential of bladder cancer cells, whereas the MKAD-21 chemically modified antisense oligo against miR-21 dose-dependently blocked xenograft growth. I.v. administration of LNA miR-21 was more effective in suppressing tumor growth than was i.p. administration. Integration of computational and transcriptomic analyses in a panel of 28 bladder cancer lines revealed a 15-gene signature that correlates with miR-21 levels. Protein Phosphatase 2 Regulatory Subunit Balpha (PPP2R2A) was one of these 15 genes and was experimentally validated as a novel miR-21 direct target gene. Gene network and molecular analyses showed that PPP2R2A is a potent negative regulator of the ERK pathway activation and bladder cancer cell proliferation. Importantly, we show that PPP2R2A acts as a mediator of miR-21-induced oncogenic effects in bladder cancer. Integrative analysis of human bladder cancer tumors and a large panel of human bladder cancer cell lines revealed a novel 15-gene signature that correlates with miR-21 levels. Importantly, we provide evidence that PPP2R2A represents a new miR-21 direct target and regulator of the ERK pathway and bladder cancer cell growth. Furthermore, i.v. administration of the MKAD-21 inhibitor effectively suppressed tumor growth through regulation of the PPP2R2A-ERK network in mice. Mol Cancer Ther; 17(7); 1430-40. ©2018 AACR.


Subject(s)
MicroRNAs/genetics , Oligonucleotides, Antisense/administration & dosage , Protein Phosphatase 2/genetics , Urinary Bladder Neoplasms/drug therapy , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , MAP Kinase Signaling System/drug effects , Mice , MicroRNAs/antagonists & inhibitors , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Xenograft Model Antitumor Assays
6.
Am J Physiol Gastrointest Liver Physiol ; 314(2): G256-G262, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29146677

ABSTRACT

Inflammatory bowel diseases (IBD) are chronic inflammatory gastrointestinal diseases, primarily consisting of ulcerative colitis and Crohn's disease. The complex nature of the disease, as well as the limited therapeutic options characterized by low efficiency and major side effects, highlights the importance of developing novel strategies of therapeutic intervention in IBD. Susceptibility loci related to IBD are present only in a small percentage of IBD patients, implying that epigenetic modifications could influence the pathogenesis of the disease. MicroRNAs (miRNAs) are small noncoding RNAs that regulate multiple molecular pathways involved in IBD pathobiology. MiRNA inhibitors targeting the IBD-activated miRNAs could have therapeutic value for IBD patients. This review provides an overview of the recent advances in miRNA biology related to IBD pathogenesis and the pharmacological development of miRNA-based therapeutics.


Subject(s)
Genetic Therapy/methods , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/therapy , MicroRNAs/genetics , MicroRNAs/therapeutic use , Oligonucleotides, Antisense/therapeutic use , Animals , Disease Models, Animal , Gene Expression Regulation , Genetic Loci , Genetic Markers , Genetic Predisposition to Disease , Genetic Therapy/adverse effects , Humans , Inflammatory Bowel Diseases/metabolism , MicroRNAs/metabolism , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , Phenotype , Signal Transduction , Transcriptome
7.
Cell Mol Gastroenterol Hepatol ; 2(3): 358-368.e4, 2016 May.
Article in English | MEDLINE | ID: mdl-27981209

ABSTRACT

BACKGROUND & AIMS: Crohn's Disease (CD) is a chronic inflammatory disease of the gastrointestinal tract. Fibrosis, a serious complication of CD, occurs when activated intestinal fibroblasts deposit excessive amounts of extracellular matrix (ECM) in affected areas. A major component of the ECM is high-molecular-weight hyaluronan (HA) that, when depolymerized to low-molecular-weight fragments, becomes proinflammatory and profibrotic. Mechanisms for HA degradation are incompletely understood, but the novel protein KIAA1199 recently was discovered to degrade HA. We hypothesized that KIAA1199 protein is increased in CD colon fibroblasts and generates HA fragments that foster inflammation and fibrosis. METHODS: Fibroblasts were isolated from explants of surgically resected colon tissue from CD and non-inflammatory bowel disease control (ND) patients. Protein levels and tissue distribution of KIAA1199 were assessed by immunoblot and immunostaining, and functional HA degradation was measured biochemically. RESULTS: Increased levels of KIAA1199 protein were produced and deposited in the ECM by cultured CD fibroblasts compared with controls. Treatment of fibroblasts with the proinflammatory cytokine interleukin (IL) 6 increased deposition of KIAA1199 in the ECM. CD fibroblasts also produce significantly higher levels of IL6 compared with controls, and antibody blockade of IL6 receptors in CD colon fibroblasts decreased the level of KIAA1199 protein in the ECM. Colon fibroblasts degrade HA, however, small interfering RNA silencing of KIAA1199 abrogated that ability. CONCLUSIONS: CD fibroblasts produce increased levels of KIAA1199 primarily through an IL6-driven autocrine mechanism. This leads to excessive degradation of HA and the generation of proinflammatory HA fragments, which contributes to maintenance of gut inflammation and fibrosis.

8.
Biomed Res Int ; 2015: 790203, 2015.
Article in English | MEDLINE | ID: mdl-26583132

ABSTRACT

Fibrosis is a debilitating condition that can lead to impairment of the affected organ's function. Excessive deposition of extracellular matrix (ECM) molecules is characteristic of most fibrotic tissues. Fibroblasts activated by cytokines or growth factors differentiate into myofibroblasts that drive fibrosis by depositing ECM molecules, such as collagen, fibronectin, and connective tissue growth factor. Transforming growth factor-ß (TGF-ß) is one of the major profibrotic cytokines which promotes fibrosis by signaling abnormal ECM regulation. Hyaluronan (HA) is a major ECM glycosaminoglycan that is regulated by TGF-ß and whose role in fibrosis is emerging. Aside from its role as a hydrating, space filling polymer, HA regulates different cellular functions and is known to have a role in wound healing and inflammation. Importantly, HA deposition is increased in multiple fibrotic diseases. In this review we highlight studies that link HA to fibrosis and discuss what is known about the role of HA, its receptors, and its anabolic and catabolic enzymes in different fibrotic diseases.


Subject(s)
Extracellular Matrix/metabolism , Fibroblasts/metabolism , Fibrosis/metabolism , Hyaluronic Acid/metabolism , Actins/metabolism , Collagen/metabolism , Extracellular Matrix/pathology , Fibroblasts/pathology , Fibrosis/genetics , Fibrosis/pathology , Humans , Myofibroblasts/metabolism , Myofibroblasts/pathology , Signal Transduction , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...