Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Clin Invest ; 130(8): 4252-4265, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32657779

ABSTRACT

Nearly all breast cancer deaths result from metastatic disease. Despite this, the genomic events that drive metastatic recurrence are poorly understood. We performed whole-exome and shallow whole-genome sequencing to identify genes and pathways preferentially mutated or copy-number altered in metastases compared with the paired primary tumors from which they arose. Seven genes were preferentially mutated in metastases - MYLK, PEAK1, SLC2A4RG, EVC2, XIRP2, PALB2, and ESR1 - 5 of which are not significantly mutated in any type of human primary cancer. Four regions were preferentially copy-number altered: loss of STK11 and CDKN2A/B, as well as gain of PTK6 and the membrane-bound progesterone receptor, PAQR8. PAQR8 gain was mutually exclusive with mutations in the nuclear estrogen and progesterone receptors, suggesting a role in treatment resistance. Several pathways were preferentially mutated or altered in metastases, including mTOR, CDK/RB, cAMP/PKA, WNT, HKMT, and focal adhesion. Immunohistochemical analyses revealed that metastases preferentially inactivate pRB, upregulate the mTORC1 and WNT signaling pathways, and exhibit nuclear localization of activated PKA. Our findings identify multiple therapeutic targets in metastatic recurrence that are not significantly mutated in primary cancers, implicate membrane progesterone signaling and nuclear PKA in metastatic recurrence, and provide genomic bases for the efficacy of mTORC1, CDK4/6, and PARP inhibitors in metastatic breast cancer.


Subject(s)
Breast Neoplasms , Gene Expression Regulation, Neoplastic , Mutation , Neoplasm Proteins , Wnt Signaling Pathway , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Humans , Neoplasm Metastasis , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics
3.
Breast Cancer Res Treat ; 164(3): 627-638, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28500398

ABSTRACT

PURPOSE: Breast cancer metastases differ biologically from primary disease; therefore, metastatic biopsies may assist in treatment decision making. Commercial genomic testing of both tumor and circulating tumor DNA have become available clinically, but utility of these tests in breast cancer management remains unclear. METHODS: Patients undergoing a clinically indicated metastatic tumor biopsy were consented to the ongoing METAMORPH registry. Tumor and blood were collected at the time of disease progression before subsequent therapy, and patients were followed for response on subsequent treatment. Tumor testing (n = 53) and concurrent cell-free DNA (n = 32) in a subset of patients was performed using CLIA-approved assays. RESULTS: The proportion of patients with a genomic alteration was lower in tumor than in blood (69 vs. 91%; p = 0.06). After restricting analysis to alterations covered on both platforms, 83% of tumor alterations were detected in blood, while 90% of blood alterations were detected in tumor. Mutational load specific for the panel genes was calculated for both tumor and blood. Time to progression on subsequent treatment was significantly shorter for patients whose tumors had high panel-specific mutational load (HR 0.31, 95% CI 0.12-0.78) or a TP53 mutation (HR 0.35, 95% CI 0.20-0.79), after adjusting for stage at presentation, hormone receptor status, prior treatment type, and number of lines of metastatic treatment. CONCLUSIONS: Treating oncologists must distinguish platform differences from true biological heterogeneity when comparing tumor and cfDNA genomic testing results. Tumor and concurrent cfDNA contribute unique genomic information in metastatic breast cancer patients, providing potentially useful biomarkers for aggressive metastatic disease.


Subject(s)
Breast Neoplasms/genetics , DNA, Neoplasm/blood , DNA, Neoplasm/genetics , Adult , Aged , Breast Neoplasms/blood , Breast Neoplasms/pathology , Disease Progression , Female , Genomics , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Mutation , Neoplasm Metastasis , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL