Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38853953

ABSTRACT

Mass spectrometry based targeted proteomics methods provide sensitive and high-throughput analysis of selected proteins. To develop a targeted bottom-up proteomics assay, peptides must be evaluated as proxies for the measurement of a protein or proteoform in a biological matrix. Candidate peptide selection typically relies on predetermined biochemical properties, data from semi-stochastic sampling, or by empirical measurements. These strategies require extensive testing and method refinement due to the difficulties associated with prediction of peptide response in the biological matrix of interest. Gas-phase fractionated (GPF) narrow window data-independent acquisition (DIA) aids in the development of reproducible selected reaction monitoring (SRM) assays by providing matrix-specific information on peptide detectability and quantification by mass spectrometry. To demonstrate the suitability of DIA data for selecting peptide targets, we reimplement a portion of an existing assay to measure 98 Alzheimer's disease proteins in cerebrospinal fluid (CSF). Peptides were selected from GPF-DIA based on signal intensity and reproducibility. The resulting SRM assay exhibits similar quantitative precision to published data, despite the inclusion of different peptides between the assays. This workflow enables development of new assays without additional up-front data acquisition, demonstrated here through generation of a separate assay for an unrelated set of proteins in CSF from the same dataset.

2.
bioRxiv ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38645098

ABSTRACT

A thorough evaluation of the quality, reproducibility, and variability of bottom-up proteomics data is necessary at every stage of a workflow from planning to analysis. We share real-world case studies applying adaptable quality control (QC) measures to assess sample preparation, system function, and quantitative analysis. System suitability samples are repeatedly measured longitudinally with targeted methods, and we share examples where they are used on three instrument platforms to identify severe system failures and track function over months to years. Internal QCs incorporated at protein and peptide-level allow our team to assess sample preparation issues and to differentiate system failures from sample-specific issues. External QC samples prepared alongside our experimental samples are used to verify the consistency and quantitative potential of our results during batch correction and normalization before assessing biological phenotypes. We combine these controls with rapid analysis using Skyline, longitudinal QC metrics using AutoQC, and server-based data deposition using PanoramaWeb. We propose that this integrated approach to QC be used as a starting point for groups to facilitate rapid quality control assessment to ensure that valuable instrument time is used to collect the best quality data possible.

3.
Cell Death Discov ; 10(1): 63, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321033

ABSTRACT

Mechanisms that regulate cell survival and proliferation are important for both the development and homeostasis of normal tissue, and as well as for the emergence and expansion of malignant cell populations. Caspase-3 (CASP3) has long been recognized for its proteolytic role in orchestrating cell death-initiated pathways and related processes; however, whether CASP3 has other functions in mammalian cells that do not depend on its known catalytic activity have remained unknown. To investigate this possibility, we examined the biological and molecular consequences of reducing CASP3 levels in normal and transformed human cells using lentiviral-mediated short hairpin-based knockdown experiments in combination with approaches designed to test the potential rescue capability of different components of the CASP3 protein. The results showed that a ≥50% reduction in CASP3 levels rapidly and consistently arrested cell cycle progression and survival in all cell types tested. Mass spectrometry-based proteomic analyses and more specific flow cytometric measurements strongly implicated CASP3 as playing an essential role in regulating intracellular protein aggregate clearance. Intriguingly, the rescue experiments utilizing different forms of the CASP3 protein showed its prosurvival function and effective removal of protein aggregates did not require its well-known catalytic capability, and pinpointed the N-terminal prodomain of CASP3 as the exclusive component needed in a diversity of human cell types. These findings identify a new mechanism that regulates human cell survival and proliferation and thus expands the complexity of how these processes can be controlled. The graphical abstract illustrates the critical role of CASP3 for sustained proliferation and survival of human cells through the clearance of protein aggregates.

4.
Front Oncol ; 13: 1286821, 2023.
Article in English | MEDLINE | ID: mdl-38260835

ABSTRACT

Background: Lung cancer is the leading cause of cancer related death worldwide, mainly due to the late stage of disease at the time of diagnosis. Non-invasive biomarkers are needed to supplement existing screening methods to enable earlier detection and increased patient survival. This is critical to EGFR-driven lung adenocarcinoma as it commonly occurs in individuals who have never smoked and do not qualify for current screening protocols. Methods: In this study, we performed mass spectrometry analysis of the secretome of cultured lung cells representing different stages of mutant EGFR driven transformation, from normal to fully malignant. Identified secreted proteins specific to the malignant state were validated using orthogonal methods and their clinical activity assessed in lung adenocarcinoma patient cohorts. Results: We quantified 1020 secreted proteins, which were compared for differential expression between stages of transformation. We validated differentially expressed proteins at the transcriptional level in clinical tumor specimens, association with patient survival, and absolute concentration to yield three biomarker candidates: MDK, GDF15, and SPINT2. These candidates were validated using ELISA and increased levels were associated with poor patient survival specifically in EGFR mutant lung adenocarcinoma patients. Conclusions: Our study provides insight into changes in secreted proteins during EGFR driven lung adenocarcinoma transformation that may play a role in the processes that promote tumor progression. The specific candidates identified can harnessed for biomarker use to identify high risk individuals for early detection screening programs and disease management for this molecular subgroup of lung adenocarcinoma patients.

5.
Anal Chem ; 89(4): 2383-2389, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28192907

ABSTRACT

As compared to conventional high-performance liquid chromatography (HPLC) techniques, nanoflow HPLC exhibits improved sensitivity and limits of detection. However, nanoflow HPLC suffers from low throughput due to instrument failure (e.g., fitting fatigue and trapping column failure), limiting the utility of the technique for clinical and industrial applications. To increase the robustness of nanoflow HPLC, we have developed and tested a trapping column exchanging robot for autonomous interchange of trapping columns. This robot makes reproducible, automated connections between the active trapping column and the rest of the HPLC system. The intertrapping column retention time is shown to be sufficiently reproducible for scheduled selected reaction monitoring assays to be performed on different trapping columns without rescheduling the selection windows.


Subject(s)
Chromatography, High Pressure Liquid/methods , Amino Acid Sequence , Automation , Chromatography, High Pressure Liquid/instrumentation , Computer-Aided Design , Dried Blood Spot Testing , Humans , Nanotechnology , Peptides/analysis , Peptides/blood , Peptides/chemistry , Reproducibility of Results , Tandem Mass Spectrometry
6.
J Am Soc Mass Spectrom ; 28(6): 1030-1035, 2017 06.
Article in English | MEDLINE | ID: mdl-27896697

ABSTRACT

Extractive electrospray ionization is an ambient ionization technique that allows real-time sampling of liquid samples, including organic aerosols. Similar to electrospray ionization, the composition of the electrospray solvent used in extractive electrospray ionization can easily be altered to form metal cationized molecules during ionization simply by adding a metal salt to the electrospray solvent. An increase in sensitivity is observed for some molecules that are lithium, sodium, or silver cationized compared with the protonated molecule formed in extractive electrospray ionization with an acid additive. Tandem mass spectrometry of metal cationized molecules can also significantly improve the ability to identify a compound. Tandem mass spectrometry of lithium and silver cationized molecules can result in an increase in the number and uniqueness of dissociation pathways relative to [M + H]+. These results highlight the potential for extractive electrospray ionization with metal cationization in analyzing complex aerosol mixtures. Graphical Abstract ᅟ.

7.
Anal Chem ; 87(23): 11887-92, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26531160

ABSTRACT

The design and operation of an inexpensive, miniature low-temperature plasma ion source is detailed. The miniature low-temperature plasma ion source is operated in a "flow-through" configuration, wherein the gaseous or aerosolized analyte, caffeine or pyrolyzed ethyl cellulose, in a carrier gas is used as the plasma gas. In this flow-through configuration, the sensitivity for the caffeine standard and the pyrolysis products of ethyl cellulose is maintained or increased and the reproducibility of the ion source is increased. Changes in the relative intensity of ions from the aerosol produced by pyrolysis of ethyl cellulose are observed in the mass spectrum when the low-temperature plasma ion source is used in the flow-through configuration. Experiments suggest this change in relative intensity is likely due to differences in ionization efficiency rather than increased fragmentation of ethyl cellulose pyrolysis products during ionization. Flow-through low-temperature plasma ionization with the miniature ion source is shown to be a promising technique for the ionization of compounds in gases or aerosol particles.

8.
Anal Chem ; 87(4): 2249-54, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25587636

ABSTRACT

Low-temperature plasma ionization, a technique that causes minimal fragmentation during ionization, is investigated as an ionization technique for mass spectrometric detection of the compounds in ambient organic aerosols in real time. The experiments presented in this paper demonstrate that ions are generated from compounds in the aerosol particles. The utility of this technique for detection of both positive and negative ions from the pyrolysate of multiple natural polymers is presented. Ultimately, low-temperature plasma ionization is shown to be a promising ionization technique for detection of compounds in organic aerosols by mass spectrometry.

9.
Forensic Sci Int ; 207(1-3): 19-26, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-20832207

ABSTRACT

The use of condoms in sexual assault cases has become increasingly common due to the heightened awareness of the use of DNA as evidence in criminal investigations. The ability to identify and differentiate the polymers and additives found in lubricant residues can provide investigators leads and insights as to the perpetrator of a sexual assault. Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) is ideal for detecting condom lubricants and additives; the instrument is capable of surveying analytes across a wide mass range and is a preferred technique for the analysis of polymers. Three MALDI-TOF-MS methods directed toward the detection and differentiation of condom and personal lubricant residues, as well as their mixtures with biological fluids, were developed and compared: (a) a sample premixed with aqueous matrix; (b) a sample premixed with an ionic liquid matrix; and (c) a layering method that incorporates a cationization reagent. Of the three, the layered method that utilized sodium chloride as a cationization reagent showed the best sensitivity and selectivity. This method allowed for the segregation of the various lubricant formulas into a discrete number of groups. Infrared spectroscopy was used to support and clarify the MALDI data. Principal component analysis was used to further demonstrate the ability of this method to segregate various lubricant types into a limited number of classes. Additionally, lubricant residues could be detected in the presence of biological fluids down to a fraction of a percent.


Subject(s)
Condoms , Lubricants/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Humans , Indicators and Reagents , Male , Principal Component Analysis , Saliva/chemistry , Semen/chemistry , Sodium Chloride
10.
J Am Soc Mass Spectrom ; 20(11): 2100-5, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19683939

ABSTRACT

The negative ion mode ESI mass spectral analysis of antimony(III)-D- and -L-tartrate ("tartar emetic"), in association with leucine enantiomeric isotopomers, revealed remarkable proton-assisted enantioselective molecular recognition phenomena. The current study infers that recognition of amino acids by antimony(III)-D,L-tartrate complexes requires that the chiral selector associate a proton to become enantioselective. The dianionic selector itself failed to show enantiomeric discrimination capacity. This observation was shown to be consistent both in solution-phase targeting full scan and gas-phase targeting collision threshold dissociation (CTD) experiments. Importantly, this disparity in enantioselective binding capacity between the dianionic and the protonated monoanionic representatives of antimony(III)-D- and -L-tartrates could only be clearly revealed by ESI-MS and tandem mass spectrometry experiments as described herein. This finding urges a more in-depth study of mechanisms associated with exhibited enantiomeric resolving capacity of antimony tartrates in HPLC and CE applications, as well as in former ESI-MS association studies.


Subject(s)
Antimony/chemistry , Gases/chemistry , Pharmaceutical Solutions/chemistry , Protons , Tartrates/chemistry , Amino Acids/chemistry , Kinetics , Leucine/chemistry , Molecular Structure , Phase Transition , Protein Binding , Solutions , Spectrometry, Mass, Electrospray Ionization/methods , Stereoisomerism , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL