Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 10(1)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35052810

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is marked by macrophage infiltration and inflammation. Chemerin is a chemoattractant protein and is abundant in hepatocytes. The aim of this study was to gain insight into the role of hepatocyte-produced prochemerin in NASH. Therefore, mice were infected with adeno-associated virus 8 to direct hepatic overexpression of prochemerin in a methionine-choline deficient dietary model of NASH. At the end of the study, hepatic and serum chemerin were higher in the chemerin-expressing mice. These animals had less hepatic oxidative stress, F4/80 and CC-chemokine ligand 2 (CCL2) protein, and mRNA levels of inflammatory genes than the respective control animals. In order to identify the underlying mechanisms, prochemerin was expressed in hepatocytes and the hepatic stellate cells, LX-2. Here, chemerin had no effect on cell viability, production of inflammatory, or pro-fibrotic factors. Notably, cultivation of human peripheral blood mononuclear cells (PBMCs) in the supernatant of Huh7 cells overexpressing chemerin reduced CCL2, interleukin-6, and osteopontin levels in cell media. CCL2 was also low in RAW264.7 cells exposed to Hepa1-6 cell produced chemerin. In summary, the current study showed that prochemerin overexpression had little effect on hepatocytes and hepatic stellate cells. Of note, hepatocyte-produced chemerin deactivated PBMCs and protected against inflammation in experimental NASH.

2.
Int J Mol Sci ; 21(20)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066326

ABSTRACT

The chemokine chemerin exists as C-terminally processed isoforms whose biological functions are mostly unknown. A highly active human chemerin variant (huChem-157) was protective in experimental hepatocellular carcinoma (HCC) models. Hepatic stellate cells (HSCs) are central mediators of hepatic fibrogenesis and carcinogenesis and express the chemerin receptors chemokine-like receptor 1 (CMKLR1) and G protein-coupled receptor 1 (GPR1). Here we aimed to analyse the effect of chemerin isoforms on the viability, proliferation and secretome of the human HSC cell line LX-2. Therefore, huChem-157, 156 and 155 were over-expressed in LX-2 cells, which have low endogenous chemerin levels. HuChem-157 produced in LX-2 cells activated CMKLR1 and GPR1, and huChem-156 modestly induced GPR1 signaling. HuChem-155 is an inactive chemerin variant. Chemerin isoforms had no effect on cell viability and proliferation. Cellular expression of the fibrotic proteins galectin-3 and alpha-smooth muscle actin was not regulated by any chemerin isoform. HuChem-156 increased IL-6, IL-8 and galectin-3 in cell media. HuChem-157 was ineffective, and accordingly, did not enhance levels of these proteins in media of primary human hepatic stellate cells when added exogenously. These analyses provide evidence that huChem-156 is the biologic active chemerin variant in hepatic stellate cells and acts as a pro-inflammatory factor.


Subject(s)
Chemokines/metabolism , Hepatic Stellate Cells/metabolism , Actins/metabolism , Cell Line , Cell Proliferation , Cells, Cultured , Chemokines/genetics , Galectin 3/metabolism , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Chemokine/metabolism , Receptors, G-Protein-Coupled/metabolism
3.
Clin Exp Med ; 20(2): 289-297, 2020 May.
Article in English | MEDLINE | ID: mdl-32078718

ABSTRACT

The acute-phase protein pentraxin-3 (PTX3) is a component of the innate immune system. Inflammation and tissue injury increased PTX3 in the injured liver, and accordingly, circulating PTX3 was induced in patients with chronic liver diseases. In the present study, PTX3 protein was determined in systemic, hepatic, and portal vein plasma of patients with liver cirrhosis to assess a possible association between hepatic PTX3 release and extent of liver injury. However, PTX3 levels were not related to disease severity. Of note, portal PTX3 levels were higher than concentrations in the hepatic vein. PTX3 in the hepatic and portal veins was negatively correlated with factor V, antithrombin 3, and prothrombin time. PTX3 did neither correlate with C-reactive protein nor galectin-3 or resistin, whereby the latter two proteins are associated with hepatic injury. PTX3 levels were not changed in cirrhosis patients with ascites or varices and did not correlate with the hepatic venous pressure gradient. Likewise, serum PTX3 was not correlated with histological steatosis, inflammation, or fibrosis stage in patients with hepatocellular carcinoma (HCC). Moreover, PTX3 was not associated with tumor node metastasis classification in HCC. Above all, PTX3 increased in hepatic, portal, and systemic blood immediately after transjugular intrahepatic portosystemic shunt (TIPS). Higher PTX3 in portal than hepatic vein plasma and further increase after TIPS suggests that the liver eliminates PTX3 from the circulation. In summary, PTX3 is not of diagnostic value in cirrhosis and HCC patients.


Subject(s)
Biomarkers/blood , C-Reactive Protein/analysis , Carcinoma, Hepatocellular/blood , Liver Cirrhosis/blood , Liver Neoplasms/blood , Serum Amyloid P-Component/analysis , Adult , Aged , Aged, 80 and over , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/pathology , Female , Hepatic Veins/metabolism , Humans , Liver Cirrhosis/etiology , Liver Function Tests , Liver Neoplasms/etiology , Liver Neoplasms/pathology , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...