Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
bioRxiv ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38979237

ABSTRACT

Naïve pluripotent stem cells (nPSC) frequently undergo pathological and not readily reversible loss of DNA methylation marks at imprinted gene loci. This abnormality poses a hurdle for using pluripotent cell lines in biomedical applications and underscores the need to identify the causes of imprint instability in these cells. We show that nPSCs from inbred mouse strains exhibit pronounced strain-specific susceptibility to locus-specific deregulation of imprinting marks during reprogramming to pluripotency and upon culture with MAP kinase inhibitors, a common approach to maintain naïve pluripotency. Analysis of genetically highly diverse nPSCs from the Diversity Outbred (DO) stock confirms that genetic variation is a major determinant of epigenome stability in pluripotent cells. We leverage the variable DNA hypomethylation in DO lines to identify several trans-acting quantitative trait loci (QTLs) that determine epigenome stability at either specific target loci or genome-wide. Candidate factors encoded by two multi-target QTLs on chromosomes 4 and 17 suggest specific transcriptional regulators that contribute to DNA methylation maintenance in nPSCs. We propose that genetic variants represent candidate biomarkers to identify pluripotent cell lines with desirable properties and might serve as entry points for the targeted engineering of nPSCs with stable epigenomes. Highlights: Naïve pluripotent stem cells from distinct inbred mouse strains exhibit variable DNA methylation levels at imprinted gene loci.The vulnerability of pluripotent stem cells to loss of genomic imprinting caused by MAP kinase inhibition strongly differs between inbred mouse strains.Genetically diverse pluripotent stem cell lines from Diversity Outbred mouse stock allow the identification of quantitative trait loci controlling DNA methylation stability.Genetic variants may serve as biomarkers to identify naïve pluripotent stem cell lines that are epigenetically stable in specific culture conditions.

2.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38854146

ABSTRACT

The molecular mechanisms that drive essential developmental patterning events in the mammalian embryo remain poorly understood. To generate a conceptual framework for gene regulatory processes during germ layer specification, we analyzed transcription factor (TF) expression kinetics around gastrulation and during in vitro differentiation. This approach identified Otx2 as a candidate regulator of definitive endoderm (DE), the precursor of all gut- derived tissues. Analysis of multipurpose degron alleles in gastruloid and directed differentiation models revealed that loss of OTX2 before or after DE specification alters the expression of core components and targets of specific cellular signaling pathways, perturbs adhesion and migration programs as well as de-represses regulators of other lineages, resulting in impaired foregut specification. Key targets of OTX2 are conserved in human DE. Mechanistically, OTX2 is required to establish chromatin accessibility at candidate enhancers, which regulate genes critical to establishing an anterior cell identity in the developing gut. Our results provide a working model for the progressive establishment of spatiotemporal cell identity by developmental TFs across germ layers and species, which may facilitate the generation of gut cell types for regenerative medicine applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...