Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotherapeutics ; 21(3): e00356, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38608373

ABSTRACT

Deep brain stimulation (DBS) is an established therapeutic tool for the treatment of Parkinson's disease (PD). The mechanisms of DBS for PD are likely rooted in modulation of the subthalamo-pallidal network. However, it can be difficult to electrophysiologically interrogate that network in human patients. The recent identification of large amplitude evoked potential (EP) oscillations from DBS in the subthalamic nucleus (STN) or globus pallidus internus (GPi) are providing new scientific opportunities to expand understanding of human basal ganglia network activity. In turn, the goal of this review is to provide a summary of DBS-induced EPs in the basal ganglia and attempt to explain various components of the EP waveforms from their likely network origins. Our analyses suggest that DBS-induced antidromic activation of globus pallidus externus (GPe) is a key driver of these oscillatory EPs, independent of stimulation location (i.e. STN or GPi). This suggests a potentially more important role for GPe in the mechanisms of DBS for PD than typically assumed. And from a practical perspective, DBS EPs are poised to become clinically useful electrophysiological biomarker signals for verification of DBS target engagement.


Subject(s)
Basal Ganglia , Deep Brain Stimulation , Evoked Potentials , Parkinson Disease , Deep Brain Stimulation/methods , Humans , Basal Ganglia/physiology , Basal Ganglia/physiopathology , Evoked Potentials/physiology , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Animals , Globus Pallidus/physiology , Subthalamic Nucleus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...