Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 576(7786): 228-231, 2019 12.
Article in English | MEDLINE | ID: mdl-31802006

ABSTRACT

The prediction of a supersonic solar wind1 was first confirmed by spacecraft near Earth2,3 and later by spacecraft at heliocentric distances as small as 62 solar radii4. These missions showed that plasma accelerates as it emerges from the corona, aided by unidentified processes that transport energy outwards from the Sun before depositing it in the wind. Alfvénic fluctuations are a promising candidate for such a process because they are seen in the corona and solar wind and contain considerable energy5-7. Magnetic tension forces the corona to co-rotate with the Sun, but any residual rotation far from the Sun reported until now has been much smaller than the amplitude of waves and deflections from interacting wind streams8. Here we report observations of solar-wind plasma at heliocentric distances of about 35 solar radii9-11, well within the distance at which stream interactions become important. We find that Alfvén waves organize into structured velocity spikes with duration of up to minutes, which are associated with propagating S-like bends in the magnetic-field lines. We detect an increasing rotational component to the flow velocity of the solar wind around the Sun, peaking at 35 to 50 kilometres per second-considerably above the amplitude of the waves. These flows exceed classical velocity predictions of a few kilometres per second, challenging models of circulation in the corona and calling into question our understanding of how stars lose angular momentum and spin down as they age12-14.

2.
Nature ; 433(7027): 720-2, 2005 Feb 17.
Article in English | MEDLINE | ID: mdl-15716946

ABSTRACT

The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms, but the relation between the solar wind and the dynamics of the outer planets' magnetospheres is poorly understood. Jupiter's magnetospheric dynamics and aurorae are dominated by processes internal to the jovian system, whereas Saturn's magnetosphere has generally been considered to have both internal and solar-wind-driven processes. This hypothesis, however, is tentative because of limited simultaneous solar wind and magnetospheric measurements. Here we report solar wind measurements, immediately upstream of Saturn, over a one-month period. When combined with simultaneous ultraviolet imaging we find that, unlike Jupiter, Saturn's aurorae respond strongly to solar wind conditions. But in contrast to Earth, the main controlling factor appears to be solar wind dynamic pressure and electric field, with the orientation of the interplanetary magnetic field playing a much more limited role. Saturn's magnetosphere is, therefore, strongly driven by the solar wind, but the solar wind conditions that drive it differ from those that drive the Earth's magnetosphere.

3.
Infect Control Hosp Epidemiol ; 22(2): 116-9, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11232874

ABSTRACT

Antimicrobial resistance, including vancomycin resistance in enterococci (VRE), is a growing problem in healthcare facilities. This "Reality Check" session focused on the question of whether we should try to detect and isolate patients colonized or infected with VRE.


Subject(s)
Cross Infection/prevention & control , Enterococcus faecium/drug effects , Infection Control/standards , Patient Isolation , Vancomycin Resistance , Attitude of Health Personnel , Centers for Disease Control and Prevention, U.S. , Guideline Adherence , Humans , Infection Control/methods , Population Surveillance , Staphylococcus aureus/drug effects , United States
4.
Science ; 246(4936): 1478-83, 1989 Dec 15.
Article in English | MEDLINE | ID: mdl-17756003

ABSTRACT

The plasma science experiment on Voyager 2 made observations of the plasma environment in Neptune's magnetosphere and in the surrounding solar wind. Because of the large tilt of the magnetic dipole and fortuitous timing, Voyager entered Neptune's magnetosphere through the cusp region, the first cusp observations at an outer planet. Thus the transition from the magnetosheath to the magnetosphere observed by Voyager 2 was not sharp but rather appeared as a gradual decrease in plasma density and temperature. The maximum plasma density observed in the magnetosphere is inferred to be 1.4 per cubic centimeter (the exact value depends on the composition), the smallest observed by Voyager in any magnetosphere. The plasma has at least two components; light ions (mass, 1 to 5) and heavy ions (mass, 10 to 40), but more precise species identification is not yet available. Most of the plasma is concentrated in a plasma sheet or plasma torus and near closest approach to the planet. A likely source of the heavy ions is Triton's atmosphere or ionosphere, whereas the light ions probably escape from Neptune. The large tilt of Neptune's magnetic dipole produces a dynamic magnetosphere that changes configuration every 16 hours as the planet rotates.

SELECTION OF CITATIONS
SEARCH DETAIL