Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Molecules ; 28(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37513446

ABSTRACT

Species of the genus Kalanchoe have a long history of therapeutic use in ethnomedicine linked to their remarkable healing properties. Several species have chemical and anatomical similarities, often leading to confusion when they are used in folk medicine. This review aims to provide an overview and discussion of the reported traditional uses, botanical aspects, chemical constituents, and pharmacological potential of the Kalanchoe species. Published scientific materials were collected from the PubMed and SciFinder databases without restriction regarding the year of publication through April 2023. Ethnopharmacological knowledge suggests that these species have been used to treat infections, inflammation, injuries, and other disorders. Typically, all parts of the plant are used for medicinal purposes either as crude extract or juice. Botanical evaluation can clarify species differentiation and can enable correct identification and validation of the scientific data. Flavonoids are the most common classes of secondary metabolites identified from Kalanchoe species and can be correlated with some biological studies (antioxidant, anti-inflammatory, and antimicrobial potential). This review summarizes several topics related to the Kalanchoe genus, supporting future studies regarding other unexplored research areas. The need to conduct further studies to confirm the popular uses and biological activities of bioactive compounds is also highlighted.


Subject(s)
Crassulaceae , Kalanchoe , Plants, Medicinal , Phytotherapy , Phytochemicals/chemistry , Ethnopharmacology , Plant Extracts/chemistry
2.
J Nat Prod ; 86(4): 1061-1073, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37043739

ABSTRACT

Botanical natural products have been widely consumed for their purported usefulness against COVID-19. Here, six botanical species from multiple sources and 173 isolated natural product compounds were screened for blockade of wild-type (WT) SARS-CoV-2 infection in human 293T epithelial cells overexpressing ACE-2 and TMPRSS2 protease (293TAT). Antiviral activity was demonstrated by an extract from Stephania tetrandra. Extract fractionation, liquid chromatography-mass spectrometry (LC-MS), antiviral assays, and computational analyses revealed that the alkaloid fraction and purified alkaloids tetrandrine, fangchinoline, and cepharanthine inhibited WT SARS-CoV-2 infection. The alkaloids and alkaloid fraction also inhibited the delta variant of concern but not WT SARS-CoV-2 in VeroAT cells. Membrane permeability assays demonstrate that the alkaloids are biologically available, although fangchinoline showed lower permeability than tetrandrine. At high concentrations, the extract, alkaloid fractions, and pure alkaloids induced phospholipidosis in 293TAT cells and less so in VeroAT cells. Gene expression profiling during virus infection suggested that alkaloid fraction and tetrandrine displayed similar effects on cellular gene expression and pathways, while fangchinoline showed distinct effects on cells. Our study demonstrates a multifaceted approach to systematically investigate the diverse activities conferred by complex botanical mixtures, their cell-context specificity, and their pleiotropic effects on biological systems.


Subject(s)
Alkaloids , Antineoplastic Agents , Benzylisoquinolines , COVID-19 , Stephania tetrandra , Stephania , Humans , Stephania tetrandra/chemistry , SARS-CoV-2 , Benzylisoquinolines/pharmacology , Benzylisoquinolines/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antiviral Agents/pharmacology , Stephania/chemistry
3.
J Ethnopharmacol ; 301: 115755, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36181985

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The prevalence of kidney disease has increased rapidly in recent years and has emerged as one of the leading causes of mortality worldwide. Natural products have been suggested as valuable nephroprotective agents due to their multi-target and synergistic effects on modulating important proteins involved in kidney injury. There is a large number of plant species that have been used traditionally for kidney-related conditions in Mesoamerican medicine by different cultural groups that could provide a valuable source of nephroprotective therapeutic candidates and could lead to potential drug discovery. AIM OF REVIEW: This review aims to provide an overview of the currently known efficacy of plant species used traditionally in Mesoamerica by Mayan groups to treat kidney-related conditions and to analyze the phytochemical, pharmacological, molecular, toxicological, and clinical evidence to contribute to public health efforts and for directing future research. METHODS: Primary sources of plant use reports for traditional kidney-related disorders in Mesoamerica were searched systematically from library catalogs, theses, and scientific databases (PubMed, Google Scholar; and Science Direct), and were filtered according to usage frequency in Mayan groups and plant endemism. The database of traditional plants was further analyzed based on associations with published reports of the phytochemical, pharmacological, molecular, toxicological, and clinical evidence. RESULTS: The most reported kidney-related conditions used traditionally in Mayan medicine involve reducing renal damage (a cultural interpretation that considers an inflammatory or infectious condition), cleaning or purifying the blood and kidney, reducing kidney pain, and eliminating kidney stones. A total of 208 plants used for kidney-related problems by 10 Mayan groups were found, representing 143 native species, where only 42 have reported pharmacological activity against kidney damage, mainly approached by in vitro and in vivo models of chemical- or drug-induced nephrotoxicity, diabetes nephropathy, and renal injury produced by hypertension. Nephroprotective effects are mainly mediated by reducing oxidative stress, inflammatory response, fibrosis mechanisms, and apoptosis in the kidney. The most common nephroprotective compounds associated with traditional Mayan medicine were flavonoids, terpenoids, and phenolic acids. The most widely studied traditional plants in terms of pharmacological evidence, bioactive compounds, and mechanisms of action, are Annona muricata L., Carica papaya L., Ipomoea batatas (L.) Lam., Lantana camara L., Sechium edule (Jacq.) Sw., Tagetes erecta L., and Zea mays L. Most of the plant species with reported pharmacological activity against kidney damage were considered safe in toxicological studies. CONCLUSION: Available pharmacological reports suggest that several herbs used in traditional Mayan medicine for renal-associated diseases may have nephroprotective effects and consistent pharmacological evidence, nephroprotective compounds, and mechanisms of action in different models of kidney injury. However, more research is required to fully understand the potential of traditional Mayan medicine in drug discovery given the limited ethnobotanical studies and data available for most species with regards to identification on bioactive components, pharmacological mechanisms, and the scarce number of clinical studies.


Subject(s)
Kidney Diseases , Medicine, Traditional , Humans , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Kidney Diseases/drug therapy , Kidney , Protective Agents , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Ethnopharmacology , Phytotherapy
4.
Antiviral Res ; 191: 105087, 2021 07.
Article in English | MEDLINE | ID: mdl-33965437

ABSTRACT

Marine microorganisms have been a resource for novel therapeutic drugs for decades. In addition to anticancer drugs, the drug acyclovir, derived from a marine sponge, is FDA-approved for the treatment of human herpes simplex virus-1 infections. Most alphaviruses that are infectious to terrestrial animals and humans, such as Venezuelan and eastern equine encephalitis viruses (VEEV and EEEV), lack efficient antiviral drugs and it is imperative to develop these remedies. To push the discovery and development of anti-alphavirus compounds forward, this study aimed to isolate and screen for potential antiviral compounds from cultured marine microbes originating from the marine environment. Compounds from marine microbes were of interest as they are prolific producers of bioactive compounds across the spectrum of human diseases and infections. Homoseongomycin, an actinobacteria isolated from a marine sponge displayed impressive activity against VEEV from a total of 76 marine bioactive products. The 50% effective concentration (EC50) for homoseongomycin was 8.6 µM for suppressing VEEV TC-83 luciferase reporter virus replication. Homoseongomycin was non-toxic up to 50 µM and partially rescued cells from VEEV induced cell death. Homoseongomycin exhibited highly efficient antiviral activity with a reduction of VEEV infectious titers by 8 log10 at 50 µM. It also inhibited EEEV replication with an EC50 of 1.2 µM. Mechanism of action studies suggest that homoseongomycin affects both early and late stages of the viral life cycle. Cells treated with 25 µM of homoseongomycin had a ~90% reduction in viral entry. In comparison, later stages showed a more robust reduction in infectious titers (6 log10) and VEEV extracellular viral RNA levels (4 log10), but a lesser impact on intracellular viral RNA levels (1.5 log10). In sum, this work demonstrates that homoseongomycin is a potential anti-VEEV and anti-EEEV compound due to its low cytotoxicity and potent antiviral activity.


Subject(s)
Actinobacteria/chemistry , Antiviral Agents/pharmacology , Encephalitis Virus, Eastern Equine/drug effects , Encephalitis Virus, Venezuelan Equine/drug effects , Fluorenes/pharmacology , Virus Replication/drug effects , Animals , Aquatic Organisms/chemistry , Cell Line , Chlorocebus aethiops , Humans , Vero Cells
5.
ACS Med Chem Lett ; 10(2): 175-179, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30783499

ABSTRACT

Spiroimines are a class of compounds produced by marine dinoflagellates with a wide range of toxicity and therapeutic potential. The smallest of the cyclic imines, portimine, is far less toxic than other known members in several animal models. Portimine has also been shown to induce apoptosis and reduce the growth of a variety of cancer cell lines at low nanomolar concentrations. In an effort to discover new spiroimines, the current study undertook a metabolomic analysis of cultures of cyclic imine-producing dinoflagellates, and a new analog of portimine was discovered in which the five-membered cyclic ether is open. Further scrutiny with human oral cavity squamous cell carcinoma (OCSCC) cell lines revealed that the open ring congener was less potent than portimine A but could still lead to the accumulation of apoptotic gene transcripts, fragment genomic DNA, and reduce cancer cell proliferation in the range of 100-200 nM.

6.
Toxicon ; 144: 91-102, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29427567

ABSTRACT

The global need for accurate and sensitive quantitation of microcystins (MCs) persists as incidents of cyanobacterial harmful algal blooms continue to rise and recent research reveals an underestimation of the human health implications of these toxins. An optimal approach for their accurate quantitation relies on the availability of stable isotope-labeled MC standards for use in stable isotope dilution analysis (SIDA) strategies involving liquid chromatography tandem mass spectrometry (LC-MS/MS). Due to the dearth of isotopically labeled MCs, ten different 15N-enriched MCs were biosynthesized from producing cultures and fully characterized. This involved the comparative MS/MS fragmentation of natural abundance or unlabeled metabolites with their 15N-labeled congeners for improved confidence in product ion annotation. These results revealed a series of incorrect annotations described previously in the literature. In this manuscript, the biosynthesis of labeled microcystin is detailed, and their complete analytical characterization for prospective use in targeted SIDA applications, such as routine water testing is described.


Subject(s)
Microcystins/biosynthesis , Microcystis/chemistry , Microcystis/metabolism , Nitrogen Isotopes/metabolism , Chromatography, Liquid , Harmful Algal Bloom , Isotope Labeling/methods , Microcystins/chemistry , Tandem Mass Spectrometry
7.
Harmful Algae ; 63: 85-93, 2017 03.
Article in English | MEDLINE | ID: mdl-28366404

ABSTRACT

Many toxic secondary metabolites used for defense are also toxic to the producing organism. One important way to circumvent toxicity is to store the toxin as an inactive precursor. Several sulfated diesters of the diarrhetic shellfish poisoning (DSP) toxin okadaic acid have been reported from cultures of various dinoflagellate species belonging to the genus Prorocentrum. It has been proposed that these sulfated diesters are a means of toxin storage within the dinoflagellate cell, and that a putative enzyme mediated two-step hydrolysis of sulfated diesters such as DTX-4 and DTX-5 initially leads to the formation of diol esters and ultimately to the release of free okadaic acid. However, only one diol ester and no sulfated diesters of DTX-1, a closely related DSP toxin, have been isolated leading some to speculate that this toxin is not stored as a sulfated diester and is processed by some other means. DSP components in organic extracts of two large scale Prorocentrum lima laboratory cultures have been investigated. In addition to the usual suite of okadaic acid esters, as well as the free acids okadaic acid and DTX-1, a group of corresponding diol- and sulfated diesters of both okadaic acid and DTX-1 have now been isolated and structurally characterized, confirming that both okadaic acid and DTX-1 are initially formed in the dinoflagellate cell as the non-toxic sulfated diesters.


Subject(s)
Okadaic Acid/analysis , Pyrans/analysis , Shellfish Poisoning , Animals , Dinoflagellida/metabolism , Marine Toxins/analysis
8.
J Nat Prod ; 79(3): 484-9, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-26641306

ABSTRACT

Understanding the biosynthesis of dinoflagellate polyketides presents many unique challenges. Because of the remaining hurdles to dinoflagellate genome sequencing, precursor labeling studies remain the only viable way to investigate dinoflagellate biosynthesis. However, prior studies have shown that polyketide chain assembly does not follow any of the established processes. Additionally, acetate, the common precursor for polyketides, is frequently scrambled, thus compromising interpretation. These factors are further compounded by low production yields of the compounds of interest. A recent report on the biosynthesis of spirolides, a group belonging to the growing class of toxic spiroimines, provided some insight into the polyketide assembly process based on acetate labeling studies, but many details were left uncertain. By feeding (13)C methyl-labeled methionine to cultures of Alexandrium ostenfeldii, the producing organism of 13-desmethylspirolide C, and application of the odd-even methylation rule, the complete biosynthetic pathway has been established.


Subject(s)
Dinoflagellida/chemistry , Marine Toxins/metabolism , Methionine/metabolism , Spiro Compounds/metabolism , Biosynthetic Pathways , Dinoflagellida/genetics , Marine Toxins/chemistry , Methionine/analogs & derivatives , Methionine/chemistry , Methylation , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Polyketides , Rationalization , Spiro Compounds/chemistry
9.
Harmful Algae ; 31: 82-86, 2014 Jan.
Article in English | MEDLINE | ID: mdl-28040114

ABSTRACT

The Cape Fear River is the largest river system in North Carolina. It is heavily used as a source of drinking water for humans and livestock as well as a source of irrigation water for crops, and production water for industry. It also serves as a major fishery for both commercial and recreational use. In recent years, possibly related to increased eutrophication of the river, massive blooms of cyanobacteria, identified as Microcystis aeruginosa have been observed. Bloom samples collected in 2009 and 2012 were chemically analyzed to determine if they contained cyanobacterial toxins known as microcystins. Both blooms were found to produce microcystins in high yields. Microcystins are potent hepatotoxins that can be bio-accumulated in the food chain. Recent biological studies have also shown a host of other potentially harmful effects of low level microcystin exposure. Detailed chemical analysis of these blooms led us to discover that these blooms produce an additional family of cyanobacterial peptides know as the micropeptins, including two new members named micropeptins 1106 and 1120. The biological activities of these new molecules have not yet been determined, although protease activity has been well documented for this peptide group. These data indicate a need for thorough monitoring of toxin levels especially during bloom events in addition to additional biological testing of other cyanopeptides present in blooms.

10.
J Antibiot (Tokyo) ; 66(7): 431-41, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23677034

ABSTRACT

Through a combination of chemical and molecular analysis, a new polyene macrolactam named micromonolactam was obtained from two marine-derived Micromonospora species. This new polyene metabolite is a constitutional isomer of salinilactam A but contains a different polyene pattern and one cis double bond, in contrast to the all trans structure reported for salinilactam A. The molecular analysis data also established that micromonolactam is a hybrid polyketide derived from 11 polyketide units and a modified glutamate starter unit.


Subject(s)
Biosynthetic Pathways/genetics , Lactams, Macrocyclic/analysis , Micromonospora/chemistry , Micromonospora/metabolism , Polyenes/analysis , Aquatic Organisms/chemistry , Aquatic Organisms/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Glutamic Acid/metabolism , Lactams, Macrocyclic/chemistry , Micromonospora/genetics , Molecular Sequence Data , Molecular Structure , Polyenes/chemistry , Sequence Analysis, DNA
11.
J Biol Chem ; 286(52): 44716-25, 2011 Dec 30.
Article in English | MEDLINE | ID: mdl-22030393

ABSTRACT

Novel classes of antimicrobials are needed to address the emergence of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). We have recently identified pyruvate kinase (PK) as a potential novel drug target based upon it being an essential hub in the MRSA interactome (Cherkasov, A., Hsing, M., Zoraghi, R., Foster, L. J., See, R. H., Stoynov, N., Jiang, J., Kaur, S., Lian, T., Jackson, L., Gong, H., Swayze, R., Amandoron, E., Hormozdiari, F., Dao, P., Sahinalp, C., Santos-Filho, O., Axerio-Cilies, P., Byler, K., McMaster, W. R., Brunham, R. C., Finlay, B. B., and Reiner, N. E. (2011) J. Proteome Res. 10, 1139-1150; Zoraghi, R., See, R. H., Axerio-Cilies, P., Kumar, N. S., Gong, H., Moreau, A., Hsing, M., Kaur, S., Swayze, R. D., Worrall, L., Amandoron, E., Lian, T., Jackson, L., Jiang, J., Thorson, L., Labriere, C., Foster, L., Brunham, R. C., McMaster, W. R., Finlay, B. B., Strynadka, N. C., Cherkasov, A., Young, R. N., and Reiner, N. E. (2011) Antimicrob. Agents Chemother. 55, 2042-2053). Screening of an extract library of marine invertebrates against MRSA PK resulted in the identification of bis-indole alkaloids of the spongotine (A), topsentin (B, D), and hamacanthin (C) classes isolated from the Topsentia pachastrelloides as novel bacterial PK inhibitors. These compounds potently and selectively inhibited both MRSA PK enzymatic activity and S. aureus growth in vitro. The most active compounds, cis-3,4-dihyrohyrohamacanthin B (C) and bromodeoxytopsentin (D), were identified as highly potent MRSA PK inhibitors (IC(50) values of 16-60 nM) with at least 166-fold selectivity over human PK isoforms. These novel anti-PK natural compounds exhibited significant antibacterial activities against S. aureus, including MRSA (minimal inhibitory concentrations (MIC) of 12.5 and 6.25 µg/ml, respectively) with selectivity indices (CC(50)/MIC) >4. We also report the discrete structural features of the MRSA PK tetramer as determined by x-ray crystallography, which is suitable for selective targeting of the bacterial enzyme. The co-crystal structure of compound C with MRSA PK confirms that the latter is a target for bis-indole alkaloids. It elucidates the essential structural requirements for PK inhibitors in "small" interfaces that provide for tetramer rigidity and efficient catalytic activity. Our results identified a series of natural products as novel MRSA PK inhibitors, providing the basis for further development of potential novel antimicrobials.


Subject(s)
Alkaloids/chemistry , Anti-Infective Agents/chemistry , Bacterial Proteins , Enzyme Inhibitors/chemistry , Indoles/chemistry , Methicillin-Resistant Staphylococcus aureus/enzymology , Pyruvate Kinase , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Protein Structure, Quaternary , Protein Structure, Tertiary , Pyruvate Kinase/antagonists & inhibitors , Pyruvate Kinase/chemistry , Structure-Activity Relationship
12.
J Med Chem ; 53(24): 8523-33, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-21121631

ABSTRACT

Analogues of the sponge meroterpenoid liphagal have been synthesized and evaluated for inhibition of PI3Kα and PI3Kγ as part of a program aimed at developing new isoform-selective PI3K inhibitors. One of the analogues, compound 24, with IC50 values of 66 nM against PI3Kα and 1840 nM against PI3Kγ, representing a 27-fold preference for PI3Kα, exhibited enhanced chemical stability and modestly enhanced potency and selectivity compared with the natural product liphagal.


Subject(s)
Phosphoinositide-3 Kinase Inhibitors , Porifera , Terpenes/chemical synthesis , Animals , Drug Stability , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Phosphatidylinositol 3-Kinase/chemistry , Stereoisomerism , Structure-Activity Relationship , Terpenes/chemistry
13.
J Med Chem ; 52(8): 2317-27, 2009 Apr 23.
Article in English | MEDLINE | ID: mdl-19323483

ABSTRACT

Cytokines produced through the antigen presenting cell (APC)-T-cell interaction play a key role in the activation of the allergic asthmatic response. Evaluating small molecules that inhibit the production of these pro-inflammatory proteins is therefore important for the discovery of novel chemical structures with potential antiasthma activity. We adapted a mouse splenocyte cytokine assay to screen a library of 2,500 marine microbial extracts for their ability to inhibit T(H)2 cytokine release and identified potent activity in a marine-derived strain CNQ431, identified as a Streptomyces species. Bioactivity guided fractionation of the organic extract of this strain led to the isolation of ten new 9-membered bis-lactones, splenocins A-J (1-10). The new compounds display potent biological activities, comparable to that of the corticosteroid dexamethasone, with IC(50) values from 2 to 50 nM in the splenocyte cytokine assay. This study provides the foundation for the optimization of these potent anti-inflammatory compounds for development in the treatment of asthma.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cytokines/antagonists & inhibitors , Geologic Sediments/microbiology , Lactones/pharmacology , Streptomyces/metabolism , Th2 Cells/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Cells, Cultured , Chemical Fractionation , Cytokines/biosynthesis , Female , Lactones/isolation & purification , Lactones/metabolism , Mice , Mice, Inbred BALB C , Molecular Conformation , Oceans and Seas , Spleen/cytology , Stereoisomerism , Th2 Cells/metabolism
14.
Clin Immunol ; 131(1): 157-69, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19135419

ABSTRACT

Siglec-F is a sialic acid binding immunoglobulin-superfamily receptor that is highly expressed on eosinophils. We have used a mouse model of oral egg ovalbumin (OVA)-induced eosinophilic inflammation of the gastro-intestinal mucosa associated with diarrhea and weight loss to determine whether administering an anti-Siglec-F antibody would reduce levels of intestinal mucosal eosinophilic inflammation. Mice administered the anti-Siglec-F antibody had significantly lower levels of intestinal eosinophilic inflammation, and this was associated with reduced intestinal permeability changes, normalization of intestinal villous crypt height, and restoration of weight gain. The reduced numbers of intestinal eosinophils in anti-Siglec-F antibody treated mice was associated with significantly reduced numbers of bone marrow and peripheral blood eosinophils, but was not associated with significant changes in the numbers of proliferating or apoptotic jejunal eosinophils. In addition, the anti-Siglec-F Ab reduced Th2 cytokines and IgE levels. Overall, these studies demonstrate that administration of an anti-Siglec-F antibody significantly reduces levels of eosinophilic inflammation in the intestinal mucosa and that this was associated with reduced intestinal permeability changes, normalization of intestinal villous crypt height, and restoration of weight gain.


Subject(s)
Antibodies/pharmacology , Antigens, Differentiation, Myelomonocytic/immunology , Egg Hypersensitivity/immunology , Eosinophilia/immunology , Gastrointestinal Diseases/immunology , Intestinal Mucosa/immunology , Animals , Apoptosis/immunology , Chemokine CCL11/immunology , Disease Models, Animal , Egg Hypersensitivity/therapy , Female , Gastrointestinal Diseases/therapy , Histocytochemistry , Immunoglobulin E/blood , In Situ Nick-End Labeling , Male , Mice , Mice, Inbred BALB C , Pilot Projects , Sialic Acid Binding Immunoglobulin-like Lectins , Th2 Cells/immunology
15.
Org Lett ; 9(8): 1525-8, 2007 Apr 12.
Article in English | MEDLINE | ID: mdl-17373804

ABSTRACT

[structure: see text] Two new cyclic peptides, thalassospiramides A and B (1 and 2), were isolated from a new member of the marine alpha-proteobacterium Thalassospira. The thalassospiramides, the structures of which were assigned by combined spectral and chemical methods, bear unusual gamma-amino acids and show immunosuppressive activity in an interleukin-5 production inhibition assay (IC50 = 5 muM for thalassospiramide B).


Subject(s)
Immunosuppressive Agents/chemistry , Peptides, Cyclic/chemistry , Rhodospirillaceae/chemistry , Amination , Animals , Hydroxylation , Immunosuppressive Agents/metabolism , Immunosuppressive Agents/pharmacology , Lymphocytes/drug effects , Magnetic Resonance Spectroscopy , Mice , Molecular Structure , Oceans and Seas , Pentanoic Acids/chemistry , Peptides, Cyclic/biosynthesis , Peptides, Cyclic/pharmacology , Rhodospirillaceae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...