Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Rep Med ; 5(7): 101654, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39019011

ABSTRACT

Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage malaria vaccine antigen target, currently in a phase 2b clinical trial as a full-length soluble protein/adjuvant vaccine candidate called RH5.1/Matrix-M. We identify that disordered regions of the full-length RH5 molecule induce non-growth inhibitory antibodies in human vaccinees and that a re-engineered and stabilized immunogen (including just the alpha-helical core of RH5) induces a qualitatively superior growth inhibitory antibody response in rats vaccinated with this protein formulated in Matrix-M adjuvant. In parallel, bioconjugation of this immunogen, termed "RH5.2," to hepatitis B surface antigen virus-like particles (VLPs) using the "plug-and-display" SpyTag-SpyCatcher platform technology also enables superior quantitative antibody immunogenicity over soluble protein/adjuvant in vaccinated mice and rats. These studies identify a blood-stage malaria vaccine candidate that may improve upon the current leading soluble protein vaccine candidate RH5.1/Matrix-M. The RH5.2-VLP/Matrix-M vaccine candidate is now under evaluation in phase 1a/b clinical trials.


Subject(s)
Antibodies, Protozoan , Malaria Vaccines , Plasmodium falciparum , Protozoan Proteins , Vaccines, Virus-Like Particle , Animals , Malaria Vaccines/immunology , Antibodies, Protozoan/immunology , Plasmodium falciparum/immunology , Vaccines, Virus-Like Particle/immunology , Humans , Mice , Protozoan Proteins/immunology , Rats , Malaria, Falciparum/prevention & control , Malaria, Falciparum/immunology , Antigens, Protozoan/immunology , Female , Carrier Proteins/immunology , Mice, Inbred BALB C
2.
Front Immunol ; 15: 1341389, 2024.
Article in English | MEDLINE | ID: mdl-38698845

ABSTRACT

Monoclonal antibodies (mAbs) are one of the most important classes of biologics with high therapeutic and diagnostic value, but traditional methods for mAbs generation, such as hybridoma screening and phage display, have limitations, including low efficiency and loss of natural chain pairing. To overcome these challenges, novel single B cell antibody technologies have emerged, but they also have limitations such as in vitro differentiation of memory B cells and expensive cell sorters. In this study, we present a rapid and efficient workflow for obtaining human recombinant monoclonal antibodies directly from single antigen-specific antibody secreting cells (ASCs) in the peripheral blood of convalescent COVID-19 patients using ferrofluid technology. This process allows the identification and expression of recombinant antigen-specific mAbs in less than 10 days, using RT-PCR to generate linear Ig heavy and light chain gene expression cassettes, called "minigenes", for rapid expression of recombinant antibodies without cloning procedures. This approach has several advantages. First, it saves time and resources by eliminating the need for in vitro differentiation. It also allows individual antigen-specific ASCs to be screened for effector function prior to recombinant antibody cloning, enabling the selection of mAbs with desired characteristics and functional activity. In addition, the method allows comprehensive analysis of variable region repertoires in combination with functional assays to evaluate the specificity and function of the generated antigen-specific antibodies. Our approach, which rapidly generates recombinant monoclonal antibodies from single antigen-specific ASCs, could help to identify functional antibodies and deepen our understanding of antibody dynamics in the immune response through combined antibody repertoire sequence analysis and functional reactivity testing.


Subject(s)
Antibodies, Monoclonal , Antibody-Producing Cells , COVID-19 , Recombinant Proteins , SARS-CoV-2 , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Antibody-Producing Cells/immunology , SARS-CoV-2/immunology , COVID-19/immunology , Antibodies, Viral/immunology , Female
SELECTION OF CITATIONS
SEARCH DETAIL