Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 15(6): 391, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830870

ABSTRACT

Tissue injury causes activation of mesenchymal lineage cells into wound-repairing myofibroblasts (MFs), whose uncontrolled activity ultimately leads to fibrosis. Although this process is triggered by deep metabolic and transcriptional reprogramming, functional links between these two key events are not yet understood. Here, we report that the metabolic sensor post-translational modification O-linked ß-D-N-acetylglucosaminylation (O-GlcNAcylation) is increased and required for myofibroblastic activation. Inhibition of protein O-GlcNAcylation impairs archetypal myofibloblast cellular activities including extracellular matrix gene expression and collagen secretion/deposition as defined in vitro and using ex vivo and in vivo murine liver injury models. Mechanistically, a multi-omics approach combining proteomic, epigenomic, and transcriptomic data mining revealed that O-GlcNAcylation controls the MF transcriptional program by targeting the transcription factors Basonuclin 2 (BNC2) and TEA domain transcription factor 4 (TEAD4) together with the Yes-associated protein 1 (YAP1) co-activator. Indeed, inhibition of protein O-GlcNAcylation impedes their stability leading to decreased functionality of the BNC2/TEAD4/YAP1 complex towards promoting activation of the MF transcriptional regulatory landscape. We found that this involves O-GlcNAcylation of BNC2 at Thr455 and Ser490 and of TEAD4 at Ser69 and Ser99. Altogether, this study unravels protein O-GlcNAcylation as a key determinant of myofibroblastic activation and identifies its inhibition as an avenue to intervene with fibrogenic processes.


Subject(s)
Myofibroblasts , Signal Transduction , Myofibroblasts/metabolism , Animals , Mice , Humans , Fibrosis/metabolism , Transcription Factors/metabolism , YAP-Signaling Proteins/metabolism , Mice, Inbred C57BL , TEA Domain Transcription Factors/metabolism , Male , Protein Processing, Post-Translational , Acetylglucosamine/metabolism , Transcription, Genetic , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics
2.
Chembiochem ; : e202400187, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639212

ABSTRACT

Understanding the mechanisms of drug action in malarial parasites is crucial for the development of new drugs to combat infection and to counteract drug resistance. Proteomics is a widely used approach to study host-pathogen systems and to identify drug protein targets. Plasmodione is an antiplasmodial early-lead drug exerting potent activities against young asexual and sexual blood stages in vitro with low toxicity to host cells. To elucidate its molecular mechanisms, an affinity-based protein profiling (AfBPP) approach was applied to yeast and P. falciparum proteomes. New (pro-) AfBPP probes based on the 3-benz(o)yl-6-fluoro-menadione scaffold were synthesized. With optimized conditions of both photoaffinity labeling and click reaction steps, the AfBPP protocol was then applied to a yeast proteome, yielding 11 putative drug-protein targets. Among these, we found four proteins associated with oxidoreductase activities, the hypothesized type of targets for plasmodione and its metabolites, and other proteins associated with the mitochondria. In Plasmodium parasites, the MS analysis revealed 44 potential plasmodione targets that need to be validated in further studies. Finally, the localization of a 3-benzyl-6-fluoromenadione AfBPP probe was studied in the subcellular structures of the parasite at the trophozoite stage.

3.
Inorg Chem ; 63(13): 6103-6110, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38497643

ABSTRACT

This paper describes the synthesis and characterization of liquid crystals based on loop-shaped cationic copper(I) complexes of a multidentate ligand. Their synthesis involves the one-pot reaction of an alkyloxy-decorated pyridine-aldehyde unit with a diamine (2,2'-(ethylenedioxy)bis(ethylamine)) spacer to form in situ a pyridine-imine quadridentate-N4-donor ligand, L, which is able to chelate a copper(I) center associated with various noncoordinating anions. All of these compounds were characterized by NMR, IR, and electronic absorption spectroscopy, and more particularly by X-ray diffraction and mass spectroscopy, enabling unambiguous assignment of the [ML]+ mononuclear nature of the cationic components. The presence of six flexible alkyloxy chains at each end of the ligand associated with the rigidity of the core complex causes induction of a liquid crystal state with a columnar self-organized architecture, where the columns are packed in a hexagonal two-dimensional network.

4.
Chemistry ; 30(12): e202304131, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38165139

ABSTRACT

Diamine reagents have been used to functionalize a [2]rotaxane building block bearing an activated pentafluorophenyl ester stopper. Upon a first acylation, an intermediate host-guest complex with a terminal amine function is obtained. Dissociation of the intermediate occurs in solution and acylation of the released axle generates a [2]rotaxane with an elongated axle subunit. In contrast, the corresponding [3]rotaxane can be obtained if the reaction conditions are appropriate to stabilize the inclusion complex of the mono-amine intermediate and the pillar[5]arene. This is the case when the stopper exchange is performed under mechanochemical solvent-free conditions. Alternatively, if the newly introduced terminal amide group is large enough to prevent the dissociation, the second acylation provides exclusively a [3]rotaxane. On the other hand, detailed conformational analysis has been also carried out by variable temperature NMR investigations. A complete understanding of the shuttling motions of the pillar[5]arene subunit along the axles of the rotaxanes reported therein has been achieved with the help of density functional theory calculations.

5.
Chemistry ; 30(12): e202400246, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38295139

ABSTRACT

Invited for the cover of this issue are the group of Iwona and Jean-François Nierengarten from the University of Strasbourg (LIMA, UMR 7042, CNRS) and collaborators from the University of Carthage and the IPHC (University of Strasbourg and CNRS, UMR 7178). The image illustrates the fast motions of a pillar[5]arene subunit along the axle of a rotaxane, reminiscent of those of a guitarist's hand along the neck allowing him to use random parts of a scale with certain sweet spots when improvising a solo. Read the full text of the article at 10.1002/chem.202304131.

6.
J Org Chem ; 89(4): 2104-2126, 2024 02 16.
Article in English | MEDLINE | ID: mdl-37267444

ABSTRACT

This work describes the reactivity and properties of fluorinated derivatives (F-PD and F-PDO) of plasmodione (PD) and its metabolite, the plasmodione oxide (PDO). Introduction of a fluorine atom on the 2-methyl group markedly alters the redox properties of the 1,4-naphthoquinone electrophore, making the compound highly oxidizing and particularly photoreactive. A fruitful set of analytical methods (electrochemistry, absorption and emission spectrophotometry, and HRMS-ESI) have been used to highlight the products resulting from UV photoirradiation in the absence or presence of selected nucleophiles. With F-PDO and in the absence of nucleophile, photoreduction generates a highly reactive ortho-quinone methide (o-QM) capable of leading to the formation of a homodimer. In the presence of thiol nucleophiles such as ß-mercaptoethanol, which was used as a model, o-QMs are continuously regenerated in sequential photoredox reactions generating mono- or disulfanylation products as well as various unreported sulfanyl products. Besides, these photoreduced adducts derived from F-PDO are characterized by a bright yellowish emission due to an excited-state intramolecular proton transfer (ESIPT) process between the dihydronapthoquinone and benzoyl units. In order to evidence the possibility of an intramolecular coupling of the o-QM intermediate, a synthetic route to the corresponding anthrones is described. Tautomerization of the targeted anthrones occurs and affords highly fluorescent stable hydroxyl-anthraquinones. Although probable to explain the intense visible fluorescence emission also observed in tobacco BY-2 cells used as a cellular model, these coupling products have never been observed during the photochemical reactions performed in this study. Our data suggest that the observed ESIPT-induced fluorescence most likely corresponds to the generation of alkylated products through reduction species, as demonstrated with the ß-mercaptoethanol model. In conclusion, F-PDO thus acts as a novel (pro)-fluorescent probe for monitoring redox processes and protein alkylation in living cells.


Subject(s)
Indolequinones , Vitamin K 3/analogs & derivatives , Mercaptoethanol , Indolequinones/chemistry , Anthraquinones
7.
Int J Mol Sci ; 24(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37569818

ABSTRACT

Varroa destructor, a major ectoparasite of the Western honey bee Apis mellifera, is a widespread pest that damages colonies in the Northern Hemisphere. Throughout their lifecycle, V. destructor females feed on almost every developmental stage of their host, from the last larval instar to the adult. The parasite is thought to feed on hemolymph and fat body, although its exact diet and nutritional requirements are poorly known. Using artificial Parafilm™ dummies, we explored the nutrition of V. destructor females and assessed their survival when fed on hemolymph from bee larvae, pupae, or adults. We compared the results with mites fed on synthetic solutions or filtered larval hemolymph. The results showed that the parasites could survive for several days or weeks on different diets. Bee larval hemolymph yielded the highest survival rates, and filtered larval plasma was sufficient to maintain the mites for 14 days or more. This cell-free solution therefore theoretically contains all the necessary nutrients for mite survival. Because some bee proteins are known to be hijacked without being digested by the parasite, we decided to run a proteomic analysis of larval honey bee plasma to highlight the most common proteins in our samples. A list of 54 proteins was compiled, including several energy metabolism proteins such as Vitellogenin, Hexamerin, or Transferrins. These molecules represent key nutrient candidates that could be crucial for V. destructor survival.

8.
Small Methods ; 7(6): e2300098, 2023 06.
Article in English | MEDLINE | ID: mdl-37035956

ABSTRACT

Advances in cryo-electron microscopy (EM) enable imaging of protein assemblies within mammalian cells in a near native state when samples are preserved by cryogenic vitrification. To accompany this progress, specialized EM labelling protocols must be developed. Gold nanoparticles (AuNPs) of 2 nm are synthesized and functionalized to bind selected intracellular targets inside living human cells and to be detected in vitreous sections. As a proof of concept, thioaminobenzoate-, thionitrobenzoate-coordinated gold nanoparticles are functionalized on their surface with SV40 Nuclear Localization Signal (NLS)-containing peptides and 2 kDa polyethyleneglycols (PEG) by thiolate exchange to target the importin-mediated nuclear machinery and facilitate cytosolic diffusion by shielding the AuNP surface from non-specific binding to cell components, respectively. After delivery by electroporation into the cytoplasm of living human cells, the PEG-coated AuNPs diffuse freely in the cytoplasm but do not enter the nucleus. Incorporation of NLS within the PEG coverage promotes a quick nuclear import of the nanoparticles in relation to the density of NLS onto the AuNPs. Cryo-EM of vitreous cell sections demonstrate the presence of 2 nm AuNPs as single entities in the nucleus. Biofunctionalized AuNPs combined with live-cell electroporation procedures are thus potent labeling tools for the identification of macromolecules in cellular cryo-EM.


Subject(s)
Gold , Metal Nanoparticles , Animals , Humans , Gold/chemistry , Cryoelectron Microscopy , Metal Nanoparticles/chemistry , Cell Nucleus/metabolism , Mammals/metabolism
9.
Nat Commun ; 13(1): 5324, 2022 09 10.
Article in English | MEDLINE | ID: mdl-36088459

ABSTRACT

Tissue injury triggers activation of mesenchymal lineage cells into wound-repairing myofibroblasts, whose unrestrained activity leads to fibrosis. Although this process is largely controlled at the transcriptional level, whether the main transcription factors involved have all been identified has remained elusive. Here, we report multi-omics analyses unraveling Basonuclin 2 (BNC2) as a myofibroblast identity transcription factor. Using liver fibrosis as a model for in-depth investigations, we first show that BNC2 expression is induced in both mouse and human fibrotic livers from different etiologies and decreases upon human liver fibrosis regression. Importantly, we found that BNC2 transcriptional induction is a specific feature of myofibroblastic activation in fibrotic tissues. Mechanistically, BNC2 expression and activities allow to integrate pro-fibrotic stimuli, including TGFß and Hippo/YAP1 signaling, towards induction of matrisome genes such as those encoding type I collagen. As a consequence, Bnc2 deficiency blunts collagen deposition in livers of mice fed a fibrogenic diet. Additionally, our work establishes BNC2 as potentially druggable since we identified the thalidomide derivative CC-885 as a BNC2 inhibitor. Altogether, we propose that BNC2 is a transcription factor involved in canonical pathways driving myofibroblastic activation in fibrosis.


Subject(s)
Liver Cirrhosis , Myofibroblasts , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genomics , Humans , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Mice , Myofibroblasts/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
10.
J Am Chem Soc ; 144(29): 13356-13365, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35771602

ABSTRACT

We have prepared a hetero-tetrametallic assembly consisting of three ytterbium ions coordinated to a central [Ru(bpm)3]2+ (bpm = 2,2'-bipyrimidine) motif. Irradiation into the absorption band of the peripheral ytterbium ions at 980 nm engenders emission of the 3MLCT state of the central [Ru(bpm)3]2+ core at 636 nm, which represents the first example of f → d molecular upconversion (UC). Time-resolved measurements reveal a slow rise of the UC emission, which was modeled with a mathematical treatment of the observed kinetics according to a cooperative photosensitization mechanism using a virtual Yb centered doubly excited state followed by energy transfer to the Ru centered 1MLCT state.


Subject(s)
Ytterbium , Energy Transfer , Ions
11.
Small ; 18(20): e2200414, 2022 05.
Article in English | MEDLINE | ID: mdl-35426247

ABSTRACT

Thermal decomposition is a very efficient synthesis strategy to obtain nanosized metal oxides with controlled structures and properties. For the iron oxide nanoparticle synthesis, it allows an easy tuning of the nanoparticle's size, shape, and composition, which is often explained by the LaMer theory involving a clear separation between nucleation and growth steps. Here, the events before the nucleation of iron oxide nanocrystals are investigated by combining different complementary in situ characterization techniques. These characterizations are carried out not only on powdered iron stearate precursors but also on a preheated liquid reaction mixture. They reveal a new nucleation mechanism for the thermal decomposition method: instead of a homogeneous nucleation, the nucleation occurs within vesicle-like-nanoreactors confining the reactants. The different steps are: 1) the melting and coalescence of iron stearate particles, leading to "droplet-shaped nanostructures" acting as nanoreactors; 2) the formation of a hitherto unobserved iron stearate crystalline phase within the nucleation temperature range, simultaneously with stearate chains loss and Fe(III) to Fe(II) reduction; 3) the formation of iron oxide nuclei inside the nanoreactors, which are then ejected from them. This mechanism paves the way toward a better mastering of the metal oxide nanoparticles synthesis and the control of their properties.


Subject(s)
Metal Nanoparticles , Oxides , Culture Media , Ferric Compounds/chemistry , Iron , Metal Nanoparticles/chemistry , Oxides/chemistry , Stearates
12.
Int J Pharm ; 609: 121154, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34624449

ABSTRACT

Bacterial biofilms are a huge burden on our healthcare systems worldwide. The lack of specificity in diagnostic and treatment possibilities result in difficult-to-treat and persistent infections. The aim of this in vitro study was to investigate if microbubbles targeted specifically to bacteria in biofilms could be used both for diagnosis as well for sonobactericide treatment and demonstrate their theranostic potential for biofilm infection management. The antibiotic vancomycin was chemically coupled to the lipid shell of microbubbles and validated using mass spectrometry and high-axial resolution 4Pi confocal microscopy. Theranostic proof-of-principle was investigated by demonstrating the specific binding of vancomycin-decorated microbubbles (vMB) to statically and flow grown Staphylococcus aureus (S. aureus) biofilms under increasing shear stress flow conditions (0-12 dyn/cm2), as well as confirmation of microbubble oscillation and biofilm disruption upon ultrasound exposure (2 MHz, 250 kPa, and 5,000 or 10,000 cycles) during flow shear stress of 5 dyn/cm2 using time-lapse confocal microscopy combined with the Brandaris 128 ultra-high-speed camera. Vancomycin was successfully incorporated into the microbubble lipid shell. vMB bound significantly more often than control microbubbles to biofilms, also in the presence of free vancomycin (up to 1000 µg/mL) and remained bound under increasing shear stress flow conditions (up to 12 dyn/cm2). Upon ultrasound insonification biofilm area was reduced of up to 28%, as confirmed by confocal microscopy. Our results confirm the successful production of vMB and support their potential as a new theranostic tool for S. aureus biofilm infections by allowing for specific bacterial detection and biofilm disruption.


Subject(s)
Staphylococcus aureus , Vancomycin , Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Microbubbles , Precision Medicine
13.
Sci Rep ; 11(1): 15615, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34341386

ABSTRACT

Chromogranin A (CgA) is the precursor of several antimicrobial peptides, such as Catestatin (Cts, bovine CgA344-364), initially described as a potent inhibitor of catecholamines. This peptide displays direct antimicrobial activities and contributes to immune system regulation. The aim of the present study is to investigate a designed peptide based on Cts to fight infections against superbugs and more particularly Staphylococcus aureus. In addition to Cateslytin (Ctl, bovine CgA344-358), the active domain of Catestatin, several peptides including dimers, D-isomer and the new designed peptide DOPA-K-DOPA-K-DOPA-TLRGGE-RSMRLSFRARGYGFR (Dopa5T-Ctl) were prepared and tested. Cateslytin is resistant to bacterial degradation and does not induce bacterial resistance. The interaction of Catestatin with immune dermal cells (dendritic cells DC1a, dermal macrophages CD14 and macrophages) was analyzed by using confocal microscopy and cytokine release assay. The dimers and D-isomer of Ctl were tested against a large variety of bacteria showing the potent antibacterial activity of the D-isomer. The peptide Dopa5T-Ctl is able to induce the self-killing of S. aureus after release of Ctl by the endoprotease Glu-C produced by this pathogen. It permits localized on-demand delivery of the antimicrobial drug directly at the infectious site.


Subject(s)
Anti-Infective Agents , Immunity, Innate , Peptides , Staphylococcus aureus , Animals , Cattle , Humans
14.
Inorg Chem ; 60(16): 12445-12456, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34339179

ABSTRACT

Iron carboxylates are widely used as iron precursors in the thermal decomposition process or considered as in situ formed intermediate precursors. Their molecular and three-dimensional (3D)-structural nature has been shown to affect the shape, size, and composition of the resulting iron oxide nanoparticles (NPs). Among carboxylate precursors, stearates are particularly attractive because of their higher stability to aging and hydration and they are used as additives in many applications. Despite the huge interest of iron stearates, very few studies aimed up to now at deciphering their full metal-ligand structures and the mechanisms allowing us to achieve in a controlled manner the bottom-up NP formation. In this work, we have thus investigated the molecular structure and composition of two iron stearate precursors, synthesized by introducing either two (FeSt2) or three (FeSt3) stearate (St) chains. Interestingly, both iron stearates consist of lamellar structures with planes of iron polynuclear complexes (polycations) separated with stearate chains in all-trans conformation. The iron content in polycations was found very different between both iron stearates. Their detailed characterizations indicate that FeSt2 is mainly composed of [Fe3-(µ3-O)St6·xH2O]Cl, with no (or few) free stearate, whereas FeSt3 is a mixture of mainly [Fe7(µ3-O(H))6(µ2-OH)xSt12-2x]St with some [Fe3(µ3-O)St6·xH2O]St and free stearic acid. The formation of bigger polynuclear complexes with FeSt3 was related to higher hydrolysis and condensation rates within the iron(III) chloride solution compared to the iron(II) chloride solution. These data suggested a nucleation mechanism based on the condensation of polycation radicals generated by the catalytic departure of two stearate chains from an iron polycation-based molecule.

16.
JACS Au ; 1(5): 669-689, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34056636

ABSTRACT

Plasmodione (PD) is a potent antimalarial redox-active drug acting at low nM range concentrations on different malaria parasite stages. In this study, in order to determine the precise PD protein interactome in parasites, we developed a class of (pro-)activity-based protein profiling probes (ABPP) as precursors of photoreactive benzophenone-like probes based on the skeleton of PD metabolites (PDO) generated in a cascade of redox reactions. Under UV-photoirradiation, we clearly demonstrate that benzylic oxidation of 3-benzylmenadione 11 produces the 3-benzoylmenadione probe 7, allowing investigation of the proof-of-concept of the ABPP strategy with 3-benzoylmenadiones 7-10. The synthesized 3-benzoylmenadiones, probe 7 with an alkyne group or probe 9 with -NO2 in para position of the benzoyl chain, were found to be the most efficient photoreactive and clickable probes. In the presence of various H-donor partners, the UV-irradiation of the photoreactive ABPP probes generates different adducts, the expected "benzophenone-like" adducts (pathway 1) in addition to "benzoxanthone" adducts (via two other pathways, 2 and 3). Using both human and Plasmodium falciparum glutathione reductases, three protein ligand binding sites were identified following photolabeling with probes 7 or 9. The photoreduction of 3-benzoylmenadiones (PDO and probe 9) promoting the formation of both the corresponding benzoxanthone and the derived enone could be replaced by the glutathione reductase-catalyzed reduction step. In particular, the electrophilic character of the benzoxanthone was evidenced by its ability to alkylate heme, as a relevant event supporting the antimalarial mode of action of PD. This work provides a proof-of-principle that (pro-)ABPP probes can generate benzophenone-like metabolites enabling optimized activity-based protein profiling conditions that will be instrumental to analyze the interactome of early lead antiplasmodial 3-benzylmenadiones displaying an original and innovative mode of action.

17.
J Am Chem Soc ; 143(17): 6498-6504, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33834779

ABSTRACT

A S6-symmetric triarylamine-based macrocycle (i.e., hexaaza[16]paracyclophane), decorated with six lateral amide functions, is synthesized by a convergent and modular strategy. This macrocycle is shown to undergo supramolecular polymerization in o-dichlorobenzene, and its nanotubular structure is elucidated by a combination of spectroscopy and microscopy techniques, together with X-ray scattering and molecular modeling. Upon sequential oxidation, a spectroelectrochemical analysis of the supramolecular polymer suggests an extended electronic delocalization of charge carriers both within the macrocycles (through bond) and between the macrocycles along the stacking direction (through space).

18.
Nat Commun ; 12(1): 1859, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767140

ABSTRACT

Biogenesis of eukaryotic box C/D small nucleolar ribonucleoproteins initiates co-transcriptionally and requires the action of the assembly machinery including the Hsp90/R2TP complex, the Rsa1p:Hit1p heterodimer and the Bcd1 protein. We present genetic interactions between the Rsa1p-encoding gene and genes involved in chromatin organization including RTT106 that codes for the H3-H4 histone chaperone Rtt106p controlling H3K56ac deposition. We show that Bcd1p binds Rtt106p and controls its transcription-dependent recruitment by reducing its association with RNA polymerase II, modulating H3K56ac levels at gene body. We reveal the 3D structures of the free and Rtt106p-bound forms of Bcd1p using nuclear magnetic resonance and X-ray crystallography. The interaction is also studied by a combination of biophysical and proteomic techniques. Bcd1p interacts with a region that is distinct from the interaction interface between the histone chaperone and histone H3. Our results are evidence for a protein interaction interface for Rtt106p that controls its transcription-associated activity.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Molecular Chaperones/metabolism , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcriptional Activation/physiology , Cell Proliferation/physiology , Chromatin/genetics , Crystallography, X-Ray , Histones/metabolism , Nuclear Magnetic Resonance, Biomolecular , RNA Polymerase II/metabolism , Ribonucleoproteins, Small Nucleolar/genetics , Ribonucleoproteins, Small Nucleolar/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic/genetics
19.
Protein Sci ; 28(10): 1865-1879, 2019 10.
Article in English | MEDLINE | ID: mdl-31423659

ABSTRACT

In the continuous exploration of the VHH chemistry, biochemistry and therapeutic future use, we investigated two different production strategies of this small antibody-like protein, using an anti-HER2 VHH as a model. The total chemical synthesis of the 125 amino-acid peptide was performed with reasonable yield, even if optimization will be necessary to upgrade this kind of production. In parallel, we expressed the same sequence in two different hosts: Escherichia coli and Pichia pastoris. Both productions were successful and led to a fair amount of VHHs. The integrity and conformation of the VHH were characterized by complementary mass spectrometry approaches, while surface plasmon resonance experiments were used to assess the VHH recognition capacity and affinity toward its "antigen." Using this combination of orthogonal techniques, it was possible to show that the three VHHs-whether synthetic or recombinant ones-were properly and similarly folded and recognized the "antigen" HER2 with similar affinities, in the nanomolar range. This opens a route toward further exploration of modified VHH with unnatural amino acids and subsequently, VHH-drug conjugates.


Subject(s)
Receptor, ErbB-2/immunology , Single-Domain Antibodies/immunology , Animals , Humans , Recombinant Proteins/immunology
20.
Life Sci Alliance ; 2(1)2019 02.
Article in English | MEDLINE | ID: mdl-30760556

ABSTRACT

During platelet biogenesis, microtubules (MTs) are arranged into submembranous structures (the marginal band) that encircle the cell in a single plane. This unique MT array has no equivalent in any other mammalian cell, and the mechanisms responsible for this particular mode of assembly are not fully understood. One possibility is that platelet MTs are composed of a particular set of tubulin isotypes that carry specific posttranslational modifications. Although ß1-tubulin is known to be essential, no equivalent roles of α-tubulin isotypes in platelet formation or function have so far been reported. Here, we identify α4A-tubulin as a predominant α-tubulin isotype in platelets. Similar to ß1-tubulin, α4A-tubulin expression is up-regulated during the late stages of megakaryocyte differentiation. Missense mutations in the α4A-tubulin gene cause macrothrombocytopenia in mice and humans. Defects in α4A-tubulin lead to changes in tubulin tyrosination status of the platelet tubulin pool. Ultrastructural defects include reduced numbers and misarranged MT coils in the platelet marginal band. We further observed defects in megakaryocyte maturation and proplatelet formation in Tuba4a-mutant mice. We have, thus, discovered an α-tubulin isotype with specific and essential roles in platelet biogenesis.


Subject(s)
Blood Platelets/physiology , Thrombocytopenia/genetics , Thrombopoiesis/physiology , Tubulin/genetics , Tubulin/metabolism , Alkylating Agents/administration & dosage , Alkylating Agents/pharmacology , Animals , Antigens, CD34/metabolism , Cells, Cultured , Ethylnitrosourea/administration & dosage , Ethylnitrosourea/pharmacology , Humans , Male , Megakaryocytes/metabolism , Mice , Mice, Inbred BALB C , Microtubules/metabolism , Mutation, Missense , Platelet Count , Tissue Donors
SELECTION OF CITATIONS
SEARCH DETAIL
...