Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
2.
Thorax ; 78(3): 225-232, 2023 03.
Article in English | MEDLINE | ID: mdl-35710744

ABSTRACT

BACKGROUND: Adult asthma is phenotypically heterogeneous with unclear aetiology. We aimed to evaluate the potential contribution of environmental exposure and its ensuing response to asthma and its heterogeneity. METHODS: Environmental risk was evaluated by assessing the records of National Health Insurance Research Database (NHIRD) and residence-based air pollution (particulate matter with diameter less than 2.5 micrometers (PM2.5) and PM2.5-bound polycyclic aromatic hydrocarbons (PAHs)), integrating biomonitoring analysis of environmental pollutants, inflammatory markers and sphingolipid metabolites in case-control populations with mass spectrometry and ELISA. Phenotypic clustering was evaluated by t-distributed stochastic neighbor embedding (t-SNE) integrating 18 clinical and demographic variables. FINDINGS: In the NHIRD dataset, modest increase in the relative risk with time-lag effect for emergency (N=209 837) and outpatient visits (N=638 538) was observed with increasing levels of PM2.5 and PAHs. Biomonitoring analysis revealed a panel of metals and organic pollutants, particularly metal Ni and PAH, posing a significant risk for current asthma (ORs=1.28-3.48) and its severity, correlating with the level of oxidative stress markers, notably Nε-(hexanoyl)-lysine (r=0.108-0.311, p<0.05), but not with the accumulated levels of PM2.5 exposure. Further, levels of circulating sphingosine-1-phosphate and ceramide-1-phosphate were found to discriminate asthma (p<0.001 and p<0.05, respectively), correlating with the levels of PAH (r=0.196, p<0.01) and metal exposure (r=0.202-0.323, p<0.05), respectively, and both correlating with circulating inflammatory markers (r=0.186-0.427, p<0.01). Analysis of six phenotypic clusters and those cases with comorbid type 2 diabetes mellitus (T2DM) revealed cluster-selective environmental risks and biosignatures. INTERPRETATION: These results suggest the potential contribution of environmental factors from multiple sources, their ensuing oxidative stress and sphingolipid remodeling to adult asthma and its phenotypic heterogeneity.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Diabetes Mellitus, Type 2 , Polycyclic Aromatic Hydrocarbons , Adult , Humans , Air Pollutants/toxicity , Air Pollutants/analysis , Sphingolipids , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL