Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 646
Filter
1.
J Chromatogr A ; 1733: 465276, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39154498

ABSTRACT

Sunitinib, N-desmethyl imatinib, dasatinib, imatinib, and bosutinib are tyrosine kinase inhibitors (TKIs) that are commonly employed in the treatment of a multitude of cancers. However, the inappropriate concentrations of TKIs can result in ineffective treatment or the emergence of multiple adverse effects. Consequently, the development of a rapid and sensitive analytical method for TKIs is of paramount importance for the safe administration of drugs. In this work, solid-phase microextraction (SPME) probe combined with an electrospray ionization mass spectrometry (ESI-MS) coupling platform was constructed for rapid and sensitive determination of TKIs. The covalent organic frameworks (COFs) coated SPME probe was made of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) and 2,5-dibutoxyterephthalaldehyde (DBTA) by in-situ layer-by-layer chemical bonding synthesis strategy. The TAPT-DBTA-SPME probe exhibited several advantageous properties which rendered it suitable for the enrichment of TKIs. Under the optimal conditions, the developed analytical method demonstrated a broad linear range (0.05-500.00 µg/L), a low limit of detection (0.02 µg/L) and a high enrichment factor (51-203) for TKIs. The developed analytical method was successfully applied to a pharmacokinetic study of TKIs in mouse plasma and tissue matrix, demonstrating that the proposed analytical method has promise for clinical applications and metabolic monitoring.

2.
Article in English | MEDLINE | ID: mdl-39086178

ABSTRACT

CONTEXT: The reliability of serum 1,5-anhydroglucitol (1,5-AG) in type 2 diabetic patients with renal insufficiency remains controversial. OBJECTIVE: To evaluate the relationship between renal function and serum 1,5-AG, and to assess the extent to which renal function influences 1,5-AG. METHODS: A total of 5337 participants with type 2 diabetes were enrolled. The measured glomerular filtration rate (mGFR) was assayed using 99mTc-DTPA dynamic renal scintigraphy. All subjects were stratified into five groups based on mGFR (≥ 120 [n = 507], 90-120 [n = 2015], 60-90 [n = 2178], 30-60 [n = 604], and < 30 mL/min/1.73 m2 [n = 33]). RESULTS: Overall, the serum 1,5-AG and mGFR levels were 3.3 (1.7-7.0) µg/mL and 88.6 ± 24.1 mL/min/1.73 m2, respectively. mGFR was found to be negatively correlated with 1,5-AG levels (r = -0.189, P < 0.001). Multiple linear regression revealed that mGFR was independently and negatively related to serum 1,5-AG after adjusting for covariates including HbA1c (P < 0.001). In subgroups with mGFR ≥ 30 mL/min/1.73 m2, the correlation coefficients between 1,5-AG and HbA1c, fasting plasma glucose, postprandial plasma glucose, and the differences between postprandial and fasting plasma glucose remained significant (range from -0.126 to -0.743, all P < 0.01). However, the link between 1,5-AG and traditional glycemic markers was attenuated in individuals with mGFR < 30 mL/min/1.73 m2. Sensitivity analysis after excluding anemic patients showed similar results regarding the relationship between serum 1,5-AG and HbA1c across the mGFR subgroups. CONCLUSIONS: Although we observed a weak inverse correlation (r = -0.189) between mGFR and serum 1,5-AG in type 2 diabetes, 1,5-AG remains a valid marker for assessing glucose control in subjects with mild or moderate renal dysfunction.

3.
Article in English | MEDLINE | ID: mdl-39167777

ABSTRACT

Ferroelectric Rashba semiconductors (FRS) are highly demanded for their potential capability for nonvolatile electric control of electron spins. An ideal FRS is characterized by a combination of room temperature ferroelectricity and a strong Rashba effect, which has, however, been rarely reported. Herein, we designed a room-temperature FRS by vertically stacking a Sb monolayer on a room-temperature ferroelectric In2Se3 monolayer. Our first-principles calculations reveal that the Sb/In2Se3 heterostructure exhibits a clean Rashba splitting band near the Fermi level and a strong Rashba effect coupled to the ferroelectric order. Switching the electric polarization direction enhances the Rashba effect, and the flipping is feasible with a low energy barrier of 22 meV. This Rashba-ferroelectricity coupling effect is robust against changes of the heterostructure interfacial distance and external electric fields. Such a nonvolatile electrically tunable Rashba effect at room temperature enables potential applications in next-generation data storage and logic devices operated under small electrical currents.

4.
Front Plant Sci ; 15: 1448807, 2024.
Article in English | MEDLINE | ID: mdl-39148610

ABSTRACT

Introduction: Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a devastating disease worldwide. Previously, we successfully generated canker-resistant Citrus sinensis cv. Hamlin lines in the T0 generation. This was achieved through the transformation of embryogenic protoplasts using the ribonucleoprotein (RNP) containing Cas12a and one crRNA to edit the canker susceptibility gene, CsLOB1, which led to small indels. Methods: Here, we transformed embryogenic protoplasts of Hamlin with RNP containing Cas12a and three crRNAs. Results: Among the 10 transgene-free genome-edited lines, long deletions were obtained in five lines. Additionally, inversions were observed in three of the five edited lines with long deletions, but not in any edited lines with short indel mutations, suggesting long deletions maybe required for inversions. Biallelic mutations were observed for each of the three target sites in four of the 10 edited lines when three crRNAs were used, demonstrating that transformation of embryogenic citrus protoplasts with Cas12a and three crRNAs RNP can be very efficient for multiplex editing. Our analysis revealed the absence of off-target mutations in the edited lines. These cslob1 mutant lines were canker- resistant and no canker symptoms were observed after inoculation with Xcc and Xcc growth was significantly reduced in the cslob1 mutant lines compared to the wild type plants. Discussion: Taken together, RNP (Cas12a and three crRNAs) transformation of embryogenic protoplasts of citrus provides a promising solution for transgene-free multiplex genome editing with high efficiency and for deletion of long fragments.

5.
Sci Total Environ ; 947: 174598, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38992350

ABSTRACT

The ultralow interfacial tension between the oil and aqueous phases and the solubilization characteristics in microemulsion systems make them useful for surface cleaning and enhanced oil recovery applications. Microemulsions can form an adsorbed barrier on rock, reducing the acid-rock reaction rate. However, as acid retardation additives, the adsorption patterns of microemulsions are not clearly defined. In this study, microemulsions composed of various electrical surfactants, oil cores, and oil core additives were obtained, and their phase behaviors were investigated. Through adsorption and reaction experiments, cleaning microemulsions that enhance adsorption effects were identified, and their adsorption patterns and adaptability under flow conditions were evaluated. The results demonstrate that incorporating negatively charged polar compounds forms an enhanced adsorption microemulsion characterized by an average droplet size of less than 30 nm after mixing with the acid. The introduction of negatively charged polar compounds resulted in a 177 % increase in adsorption and an 81 % improvement in static retardation effect. Dynamic adsorption tests indicate that the pseudo-second-order model more accurately describes the kinetics of dynamic adsorption of microemulsions on rock surfaces. Under a fixed flow rate, the dynamic retardation rate increased with the concentration of the microemulsion. In practical acidification, the adsorption of microemulsions results mainly from combined electrostatic forces and fluid scouring, characterized by a continuous process of adsorption and desorption. Scanning electron microscope also confirmed that microemulsions can form an adsorptive film on the rock, reducing the acid-rock reaction rate. This study offers practical guidelines for the selection and application of retardation additives, aiming to enhance the ecological compatibility of chemical treatments in low-permeability limestone reservoirs.

6.
Zhongguo Zhen Jiu ; 44(7): 851-5, 2024 Jul 12.
Article in Chinese | MEDLINE | ID: mdl-38986600

ABSTRACT

The theory of Huatuo Jiaji (EX-B 2) is the representative of the knowledge construction of ancient anatomy, reflecting the academic thought of Huatuo's school. Through deeply analyzing the classic theory of acupuncture and its cultural and historical materials, it is believed that the five-body constituents are the structural basis of Huatuo Jiaji (EX-B 2), qi and blood are the material one, while biaoben (the sites where meridian qi gathers and diffuses) and qijie (the common pathways through which meridian qi gathers) indicate its functions. Huatuo Jiaji (EX-B 2) reveals the rules of the transverse distribution of meridian points and the relevant indications, providing the theoretic foundation for acupuncture treatment. It highlights the importance of the anatomical knowledge in acupuncture effect and proposes a new idea for establishing an effective classification system of meridian points.


Subject(s)
Acupuncture Points , Acupuncture Therapy , Medicine in Literature , Meridians , Humans , History, Ancient , Acupuncture Therapy/history , China , Acupuncture/history , Acupuncture/education
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124834, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39032231

ABSTRACT

Iron ion (Fe3+) detection is crucial for human health since it plays a crucial role in many physiological activities. In this work, a novel Schiff-base functionalized cyanine derivative (CyPy) was synthesized, which was successfully assembled on the surface of upconversion nanoparticles (UCNPs) through an amphiphilic polymer encapsulation method. In the as-designed nanoprobe, CyPy, a recognizer of Fe3+, is served as energy donor and ß-NaYF4:Yb,Er upconversion nanoparticles are adopted as energy acceptor. As a result, a 93-fold enhancement of upconversion luminescence is achieved. The efficient energy transfer from CyPy to ß-NaYF4:Yb,Er endows the nanoprobe a high sensitivity for Fe3+ in water with a low detection limit of 0.21 µM. Moreover, the nanoprobe has been successfully applied for Fe3+ determination in human serum and tap water samples with recovery ranges of 95 %-105 % and 97 %-106 %, respectively. Moreover, their relative standard deviations are all below 3.72 %. This work provides a sensitive and efficient methodology for Fe3+ detection in clinical and environmental testing.

8.
Pediatr Nephrol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980322

ABSTRACT

BACKGROUND: To investigate the clinical features, kidney pathology, treatment regimens, and clinical outcomes of IgA vasculitis nephritis (IgAVN) with nephrotic-range proteinuria in children. METHODS: A retrospective review of children diagnosed with IgAVN between January 2019 and December 2022 was conducted. Participants were divided into two groups based on their urine protein/creatinine (UPCR) levels. Biodata, clinical characteristics, laboratory findings, pathologic features, treatment regimens, and outcomes were abstracted from case records and analyzed. RESULTS: A total of 255 children were identified, 94 with nephrotic-range proteinuria (UPCR ≥ 200 mg/mmol) and 161 with non-nephrotic proteinuria (UPCR < 200 mg/mmol). Patients in the nephrotic-range proteinuria group were significantly younger and had worse grades of glomerular and acute tubulointerstitial injury compared to those in the non-nephrotic proteinuria group. Higher levels of blood urea nitrogen (BUN), D-dimer (DD), and fibrin degradation products (FDP), and lower levels of total protein (TP), albumin (ALB), urine creatinine (Cr), prothrombin time (PT), activated partial thromboplastin time (APTT), IgG, CD3 + cells, and CD4 + cells were found in patients in the nephrotic-range proteinuria group. Clinical outcome of patients with nephrotic-range proteinuria was significantly associated with ISKDC grading, proportion of glomerular crescents and severity of acute tubulointerstitial injury. CONCLUSIONS: Children with nephrotic-range proteinuria exhibit more severe disordered immunologic function, hypercoagulability, glomerular and tubulointerstitial pathological damage, and have worse outcomes than those with lower proteinuria levels. Clinicians should pay great attention to the kidney injury and more extensive studies are required to identify optimal treatment regimens to improve outcomes in patients.

9.
Sci Adv ; 10(28): eadn3657, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996024

ABSTRACT

Australian mega-wildfires in the summer of 2019-2020 injected smoke into the stratosphere, causing strong ozone depletion in the lower stratosphere. Here, we model the smoke plume and reproduce its unexpected trajectory toward the middle stratosphere at ~35-kilometer altitude. We show that a smoke-charged vortex (SCV) induced and maintained by absorbing aerosols played a key role in lofting pollutants from the lower stratosphere and nearly doubled the southern hemispheric aerosol burden in the middle stratosphere. The SCV caused a redistribution of stratospheric aerosols, which boosted heterogeneous chemistry in the middle stratosphere and enhanced ozone production, compensating for up to 70% of the ozone depletion in the lower stratosphere. As global warming continues, we expect a growing frequency and importance of SCVs in promoting the impacts of wildfires on stratospheric aerosols and chemistry.

10.
Materials (Basel) ; 17(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38998406

ABSTRACT

In order to reveal the mechanism of sleeved stud connectors, 15 push-out specimens were designed, and static loading tests were conducted to evaluate the mechanical performance. The shear performance differences between the novel sleeved studs and conventional welded studs were compared. Referring to the experimental results, an Abaqus nonlinear finite element model was established to study the shear mechanism of sleeved stud connectors. Parametric analysis was conducted to investigate the effects of stud height, sleeve filling material, and sleeve diameter on the mechanical performance of the connectors. The experimental and finite element analysis results indicated that the ultimate shear bearing capacity and shear stiffness of the sleeved stud connectors were higher than those of ordinary welded studs, and the maximum slip was relatively small. Compared to conventional welded studs, the ultimate bearing capacity of sleeved studs increased by 4% to 8%, and the shear stiffness increased by 25% to 35%. Since the shear behavior of sleeved studs mainly occurred at the base of the studs, the influence of stud height on shear performance was relatively small. However, sleeve and stud diameter have a great influence on bearing capacity and stiffness. As the Ultra-High Performance Concrete (UHPC) near the base of the stud effectively enhanced the shear carrying capacity of the sleeved stud connectors, the shear carrying capacity and shear stiffness increased with the increase in the sleeve diameter.

11.
Phys Chem Chem Phys ; 26(31): 21155-21162, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39072416

ABSTRACT

The excited-state proton transfer (ESPT) reaction between anthracen-2-yl-3-phenylurea (PUA) derivatives and tetrabutylammonium acetate (TBAAc) in dimethyl sulfoxide (DMSO) solvent was theoretically investigated using time-dependent density functional theory. The electron-donating methoxy group (OMe) and electron-withdrawing trifluoromethyl group (CF3) were bonded to 2PUA to form OMe-2PUA and CF3-2PUA, respectively. Two hydrogen bonds formed in the 1 : 1 hydrogen-bonded complexes between the 2PUA derivative and acetate ion (AcO-), namely N1-H1⋯O1 and N2-H2⋯O2. Strong charge transfer (CT) due to the electron-donating OMe group led to H1 transfer in the S1 state for the OMe-2PUA:AcO- hydrogen-bonded complex. On the contrary, weak CT due to the electron-withdrawing CF3 group led to H2 transfer in the S1 state for CF3-2PUA. After the ESPT reaction, the binding energies of the hydrogen-bonded complexes strongly decreased in both cases, and this promoted the separation of contact-ion pairs (CIPs*) and formed different types of anionic species. CF3-2PUA- could keep its nearly planar structure in the S1 state and emit "abnormal" fluorescence. On the other hand, the anionic OMe-2PUA- underwent a twisting motion to form a twisted structure in the S1 state with very low energy, and this led to a rapid internal conversion (IC) to quench long-wave fluorescence in the emission spectra.

12.
Mikrochim Acta ; 191(8): 481, 2024 07 24.
Article in English | MEDLINE | ID: mdl-39046557

ABSTRACT

It is crucial to accurately and rapidly monitor the levodopa (LD) concentration for accurate classification and treatment of dyskinesia in Parkinson's disease. In this paper, 3D graphene foam (GF) with a highly conductive network is obtained by chemical vapor deposition. 3D GF serves as the substrate for hydrothermal in situ growth of tapered cross-linked ZnO nanowire bundle arrays (ZnO NWBAs), enabling the development of a highly sensitive detection platform for LD. The formation mechanism of a tapered cross-linked ZnO nanowire bundle arrays on 3D GF is put forward. The integration of 3D GF and ZnO NWBAs can accelerate the electron transfer rate and increase the contact area with biomolecules, resulting in high electrochemical properties. The electrode composed of ZnO NWBAs on 3D GF exhibits significant sensitivity (1.66 µA·µM-1·cm-2) for LD detection in the concentration range 0-60 µM. The electrode is able to rapidly and specifically determine LD in mixed AA or UA solution. The selectivity mechanism of the electrode is also explained by the bandgap model. Furthermore, the successful detection of LD in serum demonstrates the practicality of the electrode and its great potential for clinical application.


Subject(s)
Electrochemical Techniques , Graphite , Levodopa , Limit of Detection , Nanowires , Zinc Oxide , Graphite/chemistry , Zinc Oxide/chemistry , Nanowires/chemistry , Levodopa/blood , Levodopa/analysis , Levodopa/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Electrodes , Humans
13.
Environ Geochem Health ; 46(7): 234, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849608

ABSTRACT

The disturbance of ecological stability may take place in tropical regions due to the elevated biomass density resulting from heavy metal and other contaminant pollution. In this study, 62 valid soil samples were collected from Sanya. Source analysis of heavy metals in the area was carried out using absolute principal component-multiple linear regression receptor modelling (APCS-MLR); the comprehensive ecological risk of the study area was assessed based on pollution sources; the Monte-Carlo model was used to accurately predict the health risk of pollution sources in the study area. The results showed that: The average contents of soil heavy metals Cu, Ni and Cd in Sanya were 5.53, 6.56 and 11.66 times higher than the background values of heavy metals. The results of soil geo-accumulation index (Igeo) showed that Cr, Mo, Mn and Zn were unpolluted to moderately polluted, Cu and Ni were moderately polluted, and Cd was moderately polluted to strongly polluted. The main sources of heavy metal pollution were natural sources (57.99%), agricultural sources (38.44%) and traffic sources (3.57%). Natural and agricultural sources were jointly identified as priority control pollution sources and Cd was the priority control pollution element for soil ecological risk. Heavy metal content in Sanya did not pose a non-carcinogenic risk to the population, but there was a carcinogenic risk to children. The element Zn had a high carcinogenic risk to children, and was a priority controlling pollutant element for the risk of human health, with agricultural sources as the priority controlling pollutant source.


Subject(s)
Metals, Heavy , Monte Carlo Method , Soil Pollutants , Metals, Heavy/analysis , Soil Pollutants/analysis , China , Risk Assessment , Humans , Environmental Monitoring/methods , Tropical Climate , Child , Soil/chemistry
14.
Foods ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38890944

ABSTRACT

A long-term intake of a high-fat and high-fructose diet (HFFD), even a high-fat, high-fructose but low-protein diet (HFFD + LP), could cause obesity associated with cognitive impairments. In the present study, rats were subjected to a normal diet (ND), an HFFD diet, an HFFD + LP diet, and an HFFD with kidney bean protein (KP) diet for 8 weeks to evaluate the effect of KP on HFFD- or HFFD + LP-induced obesity and cognitive impairment. The results demonstrated that compared with the HFFD diet, KP administration significantly decreased the body weight by 7.7% and the serum Angiotensin-Converting Enzyme 2 (ACE-2) and Insulin-like Growth Factor 1 (IGF-1) levels by 14.4% and 46.8%, respectively (p < 0.05). In addition, KP suppressed HFFD-induced cognitive impairment, which was evidenced by 8.7% less time required to pass the water maze test. The 16s RNA analysis of the colonic contents showed that the relative abundance of Bifidobacterium, Butyricimonas, and Alloprevotella was increased by KP by 5.9, 44.2, and 79.2 times. Additionally, KP supplementation primarily affected the choline metabolic pathway in the liver, and the synthesis and functional pathway of neurotransmitters in the brain, thereby improving obesity and cognitive function in rats.

15.
Small ; : e2402557, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845022

ABSTRACT

Perovskite materials, particularly FAPbI3, have emerged as promising candidates for solar energy conversion applications. However, these materials are plagued by well-known defects and suboptimal film quality. Enhancing crystallinity and minimizing defect density are therefore essential steps in the development of high-performance perovskite solar cells. In this study, 1H-Pyrazole-1-carboximidamide hydrochloride (PCH) is introduced into FAPbI3 perovskite films. The molecular structure of PCH features a pyrazole ring bonded to formamidine (FA). The FA moiety of PCH facilitated the incorporation of this additive into the film lattice, while the negatively charged pyrazole ring effectively passivated positively charged iodine vacancies. The presence of PCH led to the fabrication of an FAPbI3 device with improved crystallinity, a smoother surface, and reduced defect density, resulting in enhanced Voc and fill factor. A record power conversion efficiency of 24.62% is achieved, along with exceptional stability under prolonged air exposure and thermal stress. The findings highlight the efficacy of PCH as a novel additive for the development of high-performance perovskite solar cells.

16.
Front Neurorobot ; 18: 1426355, 2024.
Article in English | MEDLINE | ID: mdl-38919791
17.
J Appl Biomed ; 22(2): 99-106, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38912865

ABSTRACT

Resveratrol (RSV) is a polyphenol antioxidant that has been shown to have neuroprotective effects. We sought molecular mechanisms that emphasize the anti-inflammatory activity of RSV in traumatic brain injury (TBI) in mice associated with endoplasmic reticulum stress (ERS). After establishing three experimental groups (sham, TBI, and TBI+RSV), we explored the results of RSV after TBI on ERS and caspase-12 apoptotic pathways. The expression levels of C/EBP homologous protein (CHOP), glucose regulated protein 78kD (GRP78), caspase-3, and caspase-12 in cortical brain tissues were assessed by western blotting. The qPCR analysis was also performed on mRNA expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1ß in cortical brain tissue. In addition, the expression of GRP78 in microglia (ionized calcium binding adaptor molecule 1; Iba-1) and neurons (neuronal nuclei; NeuN) was identified by immunofluorescence staining. The neurological function of mice was assessed by modified neurological severity scores (mNSS). After drug treatment, the expression of CHOP, GRP78, caspase-3 and caspase-12 decreased, and qPCR results showed that TNF-α and IL-1ß were down-regulated. Immunofluorescence staining showed down-regulation of Iba-1+/GRP78+ and NeuN+/GRP78+ cells after RSV treatment. The mNSS analysis confirmed improvement after RSV treatment. RSV improved apoptosis by downregulating the ERS signaling pathway and improved neurological prognosis in mice with TBI.


Subject(s)
Brain Injuries, Traumatic , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Resveratrol , Animals , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Endoplasmic Reticulum Stress/drug effects , Mice , Male , Apoptosis/drug effects , Prognosis , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Caspase 12/metabolism , Caspase 12/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL , Cell Death/drug effects , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics
18.
Adv Sci (Weinh) ; 11(31): e2402838, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896788

ABSTRACT

Chemoselective modification of specific residues within a given protein poses a significant challenge, as the microenvironment of amino acid residues in proteins is variable. Developing a universal molecular platform with tunable chemical warheads can provide powerful tools for precisely labeling specific amino acids in proteins. Cysteine and lysine are hot targets for chemoselective modification, but current cysteine/lysine-selective warheads face challenges due to cross-reactivity and unstable reaction products. In this study, a versatile fluorescent platform is developed for highly selective modification of cysteine/lysine under biocompatible conditions. Chloro- or phenoxy-substituted NBSe derivatives effectively labeled cysteine residues in the cellular proteome with high specificity. This finding also led to the development of phenoxy-NBSe phototheragnostic for the diagnosis and activatable photodynamic therapy of GSH-overexpressed cancer cells. Conversely, alkoxy-NBSe derivatives are engineered to selectively react with lysine residues in the cellular environment, exhibiting excellent anti-interfering ability against thiols. Leveraging a proximity-driven approach, alkoxy-NBSe probes are successfully designed to demonstrate their utility in bioimaging of lysine deacetylase activity. This study also achieves integrating a small photosensitizer into lysine residues of proteins in a regioselective manner, achieving photoablation of cancer cells activated by overexpressed proteins.


Subject(s)
Cysteine , Fluorescent Dyes , Lysine , Lysine/chemistry , Cysteine/chemistry , Cysteine/metabolism , Humans , Fluorescent Dyes/chemistry , Photochemotherapy/methods , Cell Line, Tumor
19.
Environ Sci Technol ; 58(19): 8326-8335, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696616

ABSTRACT

China, especially the densely populated North China region, experienced severe haze events in the past decade that concerned the public. Although the most extreme cases have been largely eliminated through recent mitigation measures, severe outdoor air pollution persists and its environmental impact needs to be understood. Severe indoor pollution draws less public attention due to the short visible distance indoors, but its public health impacts cannot be ignored. Herein, we assess the trends and impacts of severe outdoor and indoor air pollution in North China from 2014 to 2021. Our results demonstrate the uneven contribution of severe hazy days to ambient and exposure concentrations of particulate matter with an aerodynamic diameter <2.5 (PM2.5). Although severe indoor pollution contributes to indoor PM2.5 concentrations (23%) to a similar extent as severe haze contributes to ambient PM2.5 concentrations (21%), the former's contribution to premature deaths was significantly higher. Furthermore, residential emissions contributed more in the higher PM2.5 concentration range both indoors and outdoors. Notably, severe haze had greater health impacts on urban residents, while severe indoor pollution was more impactful in rural areas. Our findings suggest that, besides reducing severe haze, mitigating severe indoor pollution is an important aspect of combating air pollution, especially toward improving public health.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Environmental Monitoring , Particulate Matter , China , Particulate Matter/analysis , Air Pollutants/analysis , Air Pollution , Humans
20.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731553

ABSTRACT

One-step carbonization was explored to prepare biochar using the residue of a traditional Chinese herbal medicine, Atropa belladonna L. (ABL), as the raw material. The resulting biochar, known as ABLB4, was evaluated for its potential as a sustainable material for norfloxacin (NOR) adsorption in water. Subsequently, a comprehensive analysis of adsorption isotherms, kinetics, and thermodynamics was conducted through batch adsorption experiments. The maximum calculated NOR adsorption capacity was 252.0 mg/g at 298 K, and the spontaneous and exothermic adsorption of NOR on ABLB4 could be better suited to a pseudo-first-order kinetic model and Langmuir model. The adsorption process observed is influenced by pore diffusion, π-π interaction, electrostatic interaction, and hydrogen bonding between ABLB4 and NOR molecules. Moreover, the utilization of response surface modeling (RSM) facilitated the optimization of the removal efficiency of NOR, yielding a maximum removal rate of 97.4% at a temperature of 304.8 K, an initial concentration of 67.1 mg/L, and a pH of 7.4. Furthermore, the biochar demonstrated favorable economic advantages, with a payback of 852.5 USD/t. More importantly, even after undergoing five cycles, ABLB4 exhibited a consistently high NOR removal rate, indicating its significant potential for application in NOR adsorption.


Subject(s)
Charcoal , Drugs, Chinese Herbal , Norfloxacin , Water Pollutants, Chemical , Norfloxacin/chemistry , Charcoal/chemistry , Adsorption , Drugs, Chinese Herbal/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Kinetics , Thermodynamics , Water Purification/methods , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL