Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Plant J ; 118(5): 1439-1454, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38379355

ABSTRACT

Aporphine alkaloids are a large group of natural compounds with extensive pharmaceutical application prospects. The biosynthesis of aporphine alkaloids has been paid attentions in the past decades. Here, we determined the contents of four 1-benzylisoquinoline alkaloids and five aporphine alkaloids in root, stem, leaf, and flower of Aristolochia contorta Bunge, which belongs to magnoliids. Two CYP80 enzymes were identified and characterized from A. contorta. Both of them catalyze the unusual C-C phenol coupling reactions and directly form the aporphine alkaloid skeleton. AcCYP80G7 catalyzed the formation of hexacyclic aporphine corytuberine. AcCYP80Q8 catalyzed the formation of pentacyclic proaporphine glaziovine. Kingdom-wide phylogenetic analysis of the CYP80 family suggested that CYP80 first appeared in Nymphaeales. The functional divergence of hydroxylation and C-C (or C-O) phenol coupling preceded the divergence of magnoliids and eudicots. Probable crucial residues of AcCYP80Q8 were selected through sequence alignment and molecular docking. Site-directed mutagenesis revealed two crucial residues E284 and Y106 for the catalytic reaction. Identification and characterization of two aporphine skeleton-forming enzymes provide insights into the biosynthesis of aporphine alkaloids.


Subject(s)
Alkaloids , Aporphines , Aristolochia , Cytochrome P-450 Enzyme System , Phylogeny , Plant Proteins , Aporphines/metabolism , Aristolochia/enzymology , Aristolochia/metabolism , Aristolochia/genetics , Aristolochia/chemistry , Plant Proteins/metabolism , Plant Proteins/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Alkaloids/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/enzymology , Plant Roots/metabolism , Plant Roots/enzymology , Plant Roots/genetics , Flowers/enzymology , Flowers/genetics , Flowers/metabolism , Plant Stems/metabolism , Plant Stems/enzymology , Plant Stems/genetics
2.
Mol Biol Rep ; 50(9): 7783-7796, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37480509

ABSTRACT

DNA methylation and demethylation are widely acknowledged epigenetic phenomena which can cause heritable and phenotypic changes in functional genes without changing the DNA sequence. They can thus affect phenotype formation in medicinal plants. However, a comprehensive review of the literature summarizing current research trends in this field is lacking. Thus, this review aims to provide an up-to-date summary of current methods for the detection of 5-mC DNA methylation, identification and analysis of DNA methyltransferases and demethyltransferases, and regulation of DNA methylation in medicinal plants. The data showed that polyploidy and environmental changes can affect DNA methylation levels in medicinal plants. Changes in DNA methylation can thus regulate plant morphogenesis, growth and development, and formation of secondary metabolites. Future research is required to explore the mechanisms by which DNA methylation regulates the accumulation of secondary metabolites in medicinal plants.


Subject(s)
Plants, Medicinal , Plants, Medicinal/genetics , DNA Methylation/genetics , DNA Modification Methylases , Epigenomics , Demethylation
3.
Molecules ; 28(12)2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37375251

ABSTRACT

Sweet mogrosides are not only the primary bioactive ingredient in Siraitia grosvenorii fruits that exhibit anti-tussive properties and expectorate phlegm, but they are also responsible for the fruit's sweetness. Increasing the content or proportion of sweet mogrosides in Siraitia grosvenorii fruits is significant for improving their quality and industrial production. Post-ripening is an essential step in the post-harvest processing of Siraitia grosvenorii fruits, but the underlying mechanism and condition of post-ripening on Siraitia grosvenorii quality improvement need to be studied systematically. Therefore, this study analyzed the mogroside metabolism in Siraitia grosvenorii fruits under different post-ripening conditions. We further examined the catalytic activity of glycosyltransferase UGT94-289-3 in vitro. The results showed that the post-ripening process of fruits could catalyze the glycosylation of bitter-tasting mogroside IIE and III to form sweet mogrosides containing four to six glucose units. After ripening at 35 °C for two weeks, the content of mogroside V changed significantly, with a maximum increase of 80%, while the increase in mogroside VI was over twice its initial amount. Furthermore, under the suitable catalytic condition, UGT94-289-3 could efficiently convert the mogrosides with less than three glucose units into structurally diverse sweet mogrosides, i.e., with mogroside III as the substrate, 95% of it can converted into sweet mogrosides. These findings suggest that controlling the temperature and related catalytic conditions may activate UGT94-289-3 and promote the accumulation of sweet mogrosides. This study provides an effective method for improving the quality of Siraitia grosvenorii fruits and the accumulation of sweet mogrosides, as well as a new economical, green, and efficient method for producing sweet mogrosides.


Subject(s)
Cucurbitaceae , Triterpenes , Fruit/chemistry , Glycosyltransferases , Triterpenes/chemistry , Glucose/analysis , Cucurbitaceae/chemistry , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL