Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
1.
Front Pharmacol ; 15: 1464145, 2024.
Article in English | MEDLINE | ID: mdl-39355773

ABSTRACT

Background: The role of focal amplifications and extrachromosomal circular DNA (eccDNA) is still uncertain in prostate adenocarcinoma (PRAD). Here, we first mapped the global characterizations of eccDNA and then investigate the characterization of eccDNA-amplified key differentially expressed encoded genes (eKDEGs) in the progression, immune response and immunotherapy of PRAD. Methods: Circular_seq was used in conjunction with the TCGA-PRAD transcriptome dataset to sequence, annotate, and filter for eccDNA-amplified differentially expressed coding genes (eDEGs) in PRAD and para-cancerous normal prostate tissues. Afterwards, risk models were created and eKDEGs linked to the PRAD prognosis were identified using Cox and Lasso regression analysis. The immune microenvironment of the risk model was quantified using a variety of immunological algorithms, which also identified its characteristics with regard to immunotherapy, immune response, and immune infiltration. Results: In this research, there was no significant difference in the size, type, and chromosomal distribution of eccDNA in PRAD and para-cancerous normal prostate tissues. However, 4,290 differentially expressed eccDNAs were identified and 1,981 coding genes were amplified. Following that, 499 eDEGs were tested in conjunction with the transcriptome dataset from TCGA-PRAD. By using Cox and Lasso regression techniques, ZNF330 and PITPNM3 were identified as eKDEGs of PRAD, and a new PRAD risk model was conducted based on this. Survival analysis showed that the high-risk group of this model was associated with poor prognosis and validated in external data. Immune infiltration analysis showed that the model risks affected immune cell infiltration in PRAD, not only mediating changes in immune cell function, but also correlating with immunophenotyping. Furthermore, the high-risk group was negatively associated with anti-CTLA-4/anti-PD-1 response and mutational burden. In addition, Tumor Immune Dysfunction and Exclusion analyses showed that high-risk group was more prone to immune escape. Drug sensitivity analyses identified 10 drugs, which were instructive for PRAD treatment. Conclusion: ZNF330 and PITPNM are the eKDEGs for PRAD, which can be used as potential new prognostic markers. The two-factor combined risk model can effectively assess the survival and prognosis of PRAD patients, but also can predict the different responses of immunotherapy to PRAD patients, which may provide new ideas for PRAD immunotherapy.

2.
bioRxiv ; 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39345406

ABSTRACT

Acute myocardial ischemia triggers a rapid mobilization of neutrophils from the bone marrow to peripheral blood, facilitating their infiltration into the infarcted myocardium. These cells are critical for inducing inflammation and contributing to myocardial repair. While neutrophils in infarcted tissue are better characterized, our understanding of whether and how ischemia regulates neutrophil production, differentiation, and functionality in the bone marrow remains limited. This study investigates these processes and the influence of the cGAS-STING pathway in the context of myocardial infarction. The cGAS-STING pathway detects aberrant DNA within cells, activates STING, and initiates downstream signaling cascades involving NFKB and IRF3. We analyzed neutrophils from bone marrow, peripheral blood, and infarct tissues using MI models generated from wild-type, Cgas -/- , and Sting -/- mice. These models are essential for studying neutropoiesis (neutrophil production and differentiation), as it involves multiple cell types. RNA sequencing analysis revealed that ischemia not only increased neutrophil production but also promoted cytokine signaling, phagocytosis, chemotaxis, and degranulation in the bone marrow before their release into the peripheral blood. Inhibition of the cGAS-STING pathway decreased neutrophil production after MI and down-regulated the same pathways activated by ischemia. Neutrophils lacking cGAS or STING were less mature, exhibited reduced activation, and decreased degranulation. Deletion of cGAS and STING decreased the expression of a large group of IFN-stimulated genes and IFIT1+ neutrophils from peripheral blood and the infarct tissue, suggesting that cGAS-STING plays an essential role in neutrophils with the IFN-stimulated gene signature. Importantly, transcriptomic analysis of Cgas -/- and Sting -/- neutrophils from bone marrow and MI tissues showed downregulation of similar pathways, indicating that the functionality developed in the bone marrow was maintained despite infarct-induced stimulation. These findings highlight the importance of neutropoiesis in dictating neutrophil function in target tissues, underscoring the critical role of the cGAS-STING pathway in neutrophil-mediated myocardial repair post-ischemia.

3.
Cell Rep ; 43(9): 114697, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39217611

ABSTRACT

Physical activity reduces cancer-associated mortality through multiple mechanisms, including tumor immune microenvironment (TIME) reprogramming. However, whether and how physiological interventions promote anti-tumor immunity remain elusive. Here, we report that clinically relevant voluntary exercise promotes muscle-derived extracellular vesicle (EV)-associated miR-29a-3p for tumor extracellular matrix (ECM) inhibition in patients and mouse models, thereby permitting immune cell infiltration and immunotherapy. Mechanistically, an unbiased screening identifies EV-associated miR-29a-3p in response to leisure-time physical activity or voluntary exercise. MiR-29a-3p-containing EVs accumulate in tumors and downregulate collagen composition by targeting COL1A1. Gain- and loss-of-function experiments and cytometry by time of flight (CyTOF) demonstrate that myocyte-secreted miR-29a-3p promotes anti-tumor immunity. Combining immunotherapy with voluntary exercise or miR-29a-3p further enhances anti-tumor efficacy. Clinically, miR-29a-3p correlates with reduced ECM, increased T cell infiltration, and response to immunotherapy. Our work reveals the predictive value of miR-29a-3p for immunotherapy, provides mechanistic insights into exercise-induced anti-cancer immunity, and highlights the potential of voluntary exercise in sensitizing immunotherapy.


Subject(s)
Immunotherapy , MicroRNAs , Tumor Microenvironment , Tumor Microenvironment/immunology , Animals , Immunotherapy/methods , Mice , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Mice, Inbred C57BL , Collagen/metabolism , Exercise , Extracellular Vesicles/metabolism , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/pathology , Cell Line, Tumor , Male , Inflammation/pathology , Inflammation/immunology , Extracellular Matrix/metabolism , Female , Physical Conditioning, Animal
4.
Nat Cancer ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300320

ABSTRACT

Malignancies are reliant on glutamine as an energy source and a facilitator of aberrant DNA methylation. We demonstrate preclinical synergy of telaglenastat (CB-839), a selective glutaminase inhibitor, combined with azacytidine (AZA), followed by a single-arm, open-label, phase 1b/2 study in persons with advanced myelodysplastic syndrome (MDS). The dual primary endpoints evaluated clinical activity, safety and tolerability; secondary endpoints evaluated pharmacokinetics, pharmacodynamics, overall survival, event-free survival and duration of response. The dose-escalation study included six participants and the dose-expansion study included 24 participants. Therapy was well tolerated and led to an objective response rate of 70% with (marrow) complete remission in 53% of participants and a median overall survival of 11.6 months, with evidence of myeloid differentiation in responders determined by single-cell RNA sequencing. Glutamine transporter solute carrier family 38 member 1 in MDS stem cells was associated with clinical responses and predictive of worse prognosis in a large MDS cohort. These data demonstrate the safety and efficacy of CB-839 and AZA as a combined metabolic and epigenetic approach in MDS. ClinicalTrials.gov identifier: NCT03047993 .

5.
J Int Med Res ; 52(8): 3000605241274563, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39188141

ABSTRACT

OBJECTIVE: Identifying precise biomarkers for colorectal cancer (CRC) detection and management remains challenging. Here, we developed an innovative prognostic model for CRC using cuproptosis-related long non-coding RNAs (lncRNAs). METHODS: In this retrospective study, CRC patient transcriptomic and clinical data were sourced from The Cancer Genome Atlas database. Cuproptosis-related lncRNAs were identified and used to develop a prognostic model, which helped categorize patients into high- and low-risk groups. The model was validated through survival analysis, risk curves, independent prognostic analysis, receiver operating characteristic curve analysis, decision curves, and nomograms. In addition, we performed various immune-related analyses. LncRNA expression levels were examined in normal human colorectal epithelial cells (FHC) and CRC cells (HCT-116) using quantitative polymerase chain reaction (qPCR). RESULTS: Six cuproptosis-related lncRNAs were identified: ZKSCAN2-DT, AL161729.4, AC016394.1, AC007128.2, AL137782.1, and AC099850.3. The prognostic model distinguished between high-/low-risk populations, demonstrating excellent predictive ability for survival outcomes. Immunocorrelation analysis showed significant differences in immune cell infiltration and functions, immune checkpoint expression, and m6A methylation-related genes. The qPCR results showed significant upregulation of ZKSCAN2-DT, AL161729.4, AC016394.1, AC007128.2 in HCT-116 cells, while AL137782.1 and AC099850.3 expression patterns were significantly downregulated. CONCLUSION: Cuproptosis-related lncRNAs can potentially serve as reliable diagnostic and prognostic biomarkers for CRC.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Computational Biology , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/mortality , Computational Biology/methods , Biomarkers, Tumor/genetics , Prognosis , Male , Female , Middle Aged , Retrospective Studies , HCT116 Cells , ROC Curve , Nomograms , Aged , Gene Expression Profiling , Survival Analysis
6.
Transl Oncol ; 49: 102094, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39163760

ABSTRACT

OBJECTIVE: PARPi offers less clinical benefit for HRP patients compared to HRD patients. PARPi has an immunomodulatory function. NRT therapy targets tumor neoantigens without off-target immune toxicity. We explored the synergy between Niraparib and NRT in enhancing antitumor activity in an HRP ovarian cancer mouse model. METHODS: In the C57BL/6 mouse ID8 ovarian cancer model, the effect of Niraparib on reshaping TIME was evaluated by immune cell infiltration analysis of transcriptomic data. The antitumor effects of Niraparib, NRT, and their combined use were systematically evaluated. To corroborate alterations in TILs, TAMs, and chemokine profiles within the TIME, we employed immunofluorescence imaging and transcriptome sequencing analysis. RESULTS: Niraparib increased the M1-TAMs and activated CD8+ T cells in tumor tissues of C57BL/6 mice with ID8 ovarian cancer. GSEA showed that gene set associated with immature DC and INFα, cytokines and chemokines were significantly enriched in immune feature, KEGG and GO gene sets, meanwhile CCL5, CXCL9 and CXCL10 play dominant roles together. In the animal trials, combined group had a tumor growth delay compared with Niraparib group (P < 0.01) and control group (P < 0.001), and longer survival compared with the single agent group (P<0.01) . CONCLUSIONS: Niraparib could exert immune-reshaping effects, then acts synergistic antitumor effects with NRT in HRP ovarian cancer model. Our findings provide new ideas and rationale for combined immunotherapy in HRP ovarian cancer.

7.
Cancer Res Commun ; 4(8): 1991-2007, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38994678

ABSTRACT

Aggressive breast cancers harbor TP53 missense mutations. Tumor cells with TP53 missense mutations exhibit enhanced growth and survival through transcriptional rewiring. To delineate how TP53 mutations in breast cancer contribute to tumorigenesis and progression in vivo, we created a somatic mouse model driven by mammary epithelial cell-specific expression of Trp53 mutations. Mice developed primary mammary tumors reflecting the human molecular subtypes of luminal A, luminal B, HER2-enriched, and triple-negative breast cancer with metastases. Transcriptomic analyses comparing MaPR172H/- or MaPR245W/- mammary tumors to MaP-/- tumors revealed (1) differences in cancer-associated pathways activated in both p53 mutants and (2) Nr5a2 as a novel transcriptional mediator of distinct pathways in p53 mutants. Meta-analyses of human breast tumors corroborated these results. In vitro assays demonstrate mutant p53 upregulates specific target genes that are enriched for Nr5a2 response elements in their promoters. Co-immunoprecipitation studies revealed p53R172H and p53R245W interact with Nr5a2. These findings implicate NR5A2 as a novel mediator of mutant p53 transcriptional activity in breast cancer. SIGNIFICANCE: Our findings implicate NR5A2 as a novel mediator of mutant p53 transcriptional activity in breast cancer. NR5A2 may be an important therapeutic target in hard-to-treat breast cancers such as endocrine-resistant tumors and metastatic triple-negative breast cancers harboring TP53 missense mutations.


Subject(s)
Mammary Neoplasms, Experimental , Transcriptome , Tumor Suppressor Protein p53 , Animals , Female , Humans , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/metabolism , Mutation , Mutation, Missense , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
8.
Chemphyschem ; 25(17): e202400075, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38822681

ABSTRACT

Environmental pollution management and renewable energy development are humanity's biggest issues in the 21st century. The rise in atmospheric CO2, which has surpassed 400 parts per million, has stimulated research on CO2 reduction and conversion methods. Presently, photocatalytic conversion of CO2 to valuable hydrocarbons enables the transformation of solar energy into chemical energy and offers a novel avenue for energy conversion while regulating the greenhouse effect. This is an ideal strategy for simultaneously addressing environmental issues and the energy crisis. Photocatalysts are essential to photocatalytic processes. Photocatalyst is the core of photocatalytic technology, and graphite carbon nitride (g-C3N4) has attracted much attention because of its nonmetallic characteristics, and it has the characteristics of low cost, tunable electronic structure, easy manufacture and strong reducibility. However, its activity is not only affected by external reaction conditions, but also by the band gap structure, physical and chemical stability, surface morphology and specific surface area of the photocatalyst it. In this paper, the application progress of g-C3N4-based photocatalytic materials in CO2 reduction is reviewed, and the modification strategies of g-C3N4-based catalysts to obtain better catalytic efficiency and selectivity in CO2 photocatalytic reduction are summarized, and the future development of this material is prospected.

9.
Chemosphere ; 361: 142547, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851503

ABSTRACT

The practical fabrication of quantum dot materials, including their size, shape, form, crystallinity, and chemical composition, is a crucial research area in the field of photocatalysis. Quantum dots can effectively enhance the separation and transfer of carriers and expand the utilization of visible light when used in heterogeneous junctions with wide bandgap semiconductors. Additionally, they exhibit excellent photosensitivity properties that significantly improve the material's capacity for absorbing visible light. This paper systematically presents an overview of the outstanding optical properties exhibited by quantum dots based on both domestic and international research on photocatalytic materials. Furthermore, it summarizes the research content, characteristics, and current challenges associated with common types of quantum dots and photocatalytic materials while highlighting their applications in environmental remediation and energy production. Finally, this paper anticipates future trends in the development of photocatalysis by providing valuable insights into more efficient semiconductor materials that are cost-effective yet environmentally friendly.


Subject(s)
Environmental Restoration and Remediation , Quantum Dots , Quantum Dots/chemistry , Catalysis , Environmental Restoration and Remediation/methods , Photochemical Processes , Nanostructures/chemistry , Semiconductors , Light
10.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731438

ABSTRACT

It is very important to choose a suitable method and catalyst to treat coking wastewater. In this study, Fe-Ce-Al/MMT catalysts with different Fe/Ce molar ratios were prepared, characterized by XRD, SEM, and N2 adsorption/desorption, and treated with coking wastewater. The results showed that the optimal Fe-Ce-Al/MMT catalyst with a molar ratio of Fe/Ce of 7/3 has larger interlayer spacing, specific surface area, and pore volume. Based on the composition analysis of real coking wastewater and the study of phenol simulated wastewater, the response surface test of the best catalyst for real coking wastewater was carried out, and the results are as follows: initial pH 3.46, H2O2 dosage 19.02 mL/L, Fe2+ dosage 5475.39 mL/L, reaction temperature 60 °C, and reaction time 248.14 min. Under these conditions, the COD removal rate was 86.23%.

11.
Int J Biol Macromol ; 267(Pt 2): 131514, 2024 May.
Article in English | MEDLINE | ID: mdl-38608986

ABSTRACT

The cell nucleus serves as the pivotal command center of living cells, and delivering therapeutic agents directly into the nucleus can result in highly efficient anti-tumor eradication of cancer cells. However, nucleus-targeting drug delivery is very difficult due to the presence of numerous biological barriers. Here, three antitumor drugs (DNase I, ICG: indocyanine green, and THP: pirarubicin) were sequentially triggered protein self-assembly to produce a nucleus-targeting and programmed responsive multi-drugs delivery system (DIT). DIT consisted of uniform spherical particles with a size of 282 ± 7.7 nm. The acidic microenvironment of tumors and near-infrared light could successively trigger DIT for the programmed release of three drugs, enabling targeted delivery to the tumor. THP served as a nucleus-guiding molecule and a chemotherapy drug. Through THP-guided DIT, DNase I was successfully delivered to the nucleus of tumor cells and killed them by degrading their DNA. Tumor acidic microenvironment had the ability to induce DIT, leading to the aggregation of sufficient ICG in the tumor tissues. This provided an opportunity for the photothermal therapy of ICG. Hence, three drugs were cleverly combined using a simple method to achieve multi-drugs targeted delivery and highly effective combined anticancer therapy.


Subject(s)
Antineoplastic Agents , Cell Nucleus , Deoxyribonuclease I , Doxorubicin , Drug Delivery Systems , Drug Liberation , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Cell Nucleus/metabolism , Deoxyribonuclease I/metabolism , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Doxorubicin/analogs & derivatives , Drug Carriers/chemistry , Indocyanine Green/chemistry , Tumor Microenvironment/drug effects , Male , Mice, Inbred BALB C , Mice, Nude
12.
Blood ; 143(20): 2059-2072, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38437498

ABSTRACT

ABSTRACT: BRG1 (SMARCA4) and BRM (SMARCA2) are the mutually exclusive core ATPases of the chromatin remodeling BAF (BRG1/BRM-associated factor) complexes. They enable transcription factors/cofactors to access enhancers/promoter and modulate gene expressions responsible for cell growth and differentiation of acute myeloid leukemia (AML) stem/progenitor cells. In AML with MLL1 rearrangement (MLL1r) or mutant NPM1 (mtNPM1), although menin inhibitor (MI) treatment induces clinical remissions, most patients either fail to respond or relapse, some harboring menin mutations. FHD-286 is an orally bioavailable, selective inhibitor of BRG1/BRM under clinical development in AML. Present studies show that FHD-286 induces differentiation and lethality in AML cells with MLL1r or mtNPM1, concomitantly causing perturbed chromatin accessibility and repression of c-Myc, PU.1, and CDK4/6. Cotreatment with FHD-286 and decitabine, BET inhibitor (BETi) or MI, or venetoclax synergistically induced in vitro lethality in AML cells with MLL1r or mtNPM1. In models of xenografts derived from patients with AML with MLL1r or mtNPM1, FHD-286 treatment reduced AML burden, improved survival, and attenuated AML-initiating potential of stem-progenitor cells. Compared with each drug, cotreatment with FHD-286 and BETi, MI, decitabine, or venetoclax significantly reduced AML burden and improved survival, without inducing significant toxicity. These findings highlight the FHD-286-based combinations as a promising therapy for AML with MLL1r or mtNPM1.


Subject(s)
DNA Helicases , Leukemia, Myeloid, Acute , Nuclear Proteins , Proto-Oncogene Proteins , Transcription Factors , Animals , Humans , Mice , Bromodomain Containing Proteins , Cell Line, Tumor , DNA Helicases/antagonists & inhibitors , DNA Helicases/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleophosmin , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Xenograft Model Antitumor Assays
13.
Blood Cancer J ; 14(1): 25, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38316746

ABSTRACT

Germline, mono-allelic mutations in RUNX1 cause familial platelet disorder (RUNX1-FPD) that evolves into myeloid malignancy (FPD-MM): MDS or AML. FPD-MM commonly harbors co-mutations in the second RUNX1 allele and/or other epigenetic regulators. Here we utilized patient-derived (PD) FPD-MM cells and established the first FPD-MM AML cell line (GMR-AML1). GMR-AML1 cells exhibited active super-enhancers of MYB, MYC, BCL2 and CDK6, augmented expressions of c-Myc, c-Myb, EVI1 and PLK1 and surface markers of AML stem cells. In longitudinally studied bone marrow cells from a patient at FPD-MM vs RUNX1-FPD state, we confirmed increased chromatin accessibility and mRNA expressions of MYB, MECOM and BCL2 in FPD-MM cells. GMR-AML1 and PD FPD-MM cells were sensitive to homoharringtonine (HHT or omacetaxine) or mebendazole-induced lethality, associated with repression of c-Myc, EVI1, PLK1, CDK6 and MCL1. Co-treatment with MB and the PLK1 inhibitor volasertib exerted synergistic in vitro lethality in GMR-AML1 cells. In luciferase-expressing GMR-AML1 xenograft model, MB, omacetaxine or volasertib monotherapy, or co-treatment with MB and volasertib, significantly reduced AML burden and improved survival in the immune-depleted mice. These findings highlight the molecular features of FPD-MM progression and demonstrate HHT, MB and/or volasertib as effective agents against cellular models of FPD-MM.


Subject(s)
Blood Platelet Disorders , Leukemia, Myeloid, Acute , Humans , Animals , Mice , Core Binding Factor Alpha 2 Subunit/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Homoharringtonine , Blood Platelets/pathology , Blood Platelet Disorders/complications , Blood Platelet Disorders/genetics , Blood Platelet Disorders/pathology , Proto-Oncogene Proteins c-bcl-2
14.
Sci Adv ; 10(7): eadk1835, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38354236

ABSTRACT

The TP53 tumor suppressor gene is mutated early in most of the patients with triple-negative breast cancer (TNBC). The most frequent TP53 alterations are missense mutations that contribute to tumor aggressiveness. Here, we used an autochthonous somatic TNBC mouse model, in which mutant p53 can be toggled on and off genetically while leaving the tumor microenvironment intact and wild-type for p53 to identify physiological dependencies on mutant p53. In TNBCs that develop in this model, deletion of two different hotspot p53R172H and p53R245W mutants triggers ferroptosis in vivo, a cell death mechanism involving iron-dependent lipid peroxidation. Mutant p53 protects cells from ferroptosis inducers, and ferroptosis inhibitors reverse the effects of mutant p53 loss in vivo. Single-cell transcriptomic data revealed that mutant p53 protects cells from undergoing ferroptosis through NRF2-dependent regulation of Mgst3 and Prdx6, which encode two glutathione-dependent peroxidases that detoxify lipid peroxides. Thus, mutant p53 protects TNBCs from ferroptotic death.


Subject(s)
Adenocarcinoma , Ferroptosis , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Ferroptosis/genetics , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
15.
Leukemia ; 38(3): 545-556, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38086946

ABSTRACT

AML with chromosomal alterations involving 3q26 overexpresses the transcription factor (TF) EVI1, associated with therapy refractoriness and inferior overall survival in AML. Consistent with a CRISPR screen highlighting BRD4 dependency, treatment with BET inhibitor (BETi) repressed EVI1, LEF1, c-Myc, c-Myb, CDK4/6, and MCL1, and induced apoptosis of AML cells with 3q26 lesions. Tegavivint (TV, BC-2059), known to disrupt the binding of nuclear ß-catenin and TCF7L2/LEF1 with TBL1, also inhibited co-localization of EVI1 with TBL1 and dose-dependently induced apoptosis in AML cell lines and patient-derived (PD) AML cells with 3q26.2 lesions. TV treatment repressed EVI1, attenuated enhancer activity at ERG, TCF7L2, GATA2 and MECOM loci, abolished interactions between MYC enhancers, repressing AML stemness while upregulating mRNA gene-sets of interferon/inflammatory response, TGF-ß signaling and apoptosis-regulation. Co-treatment with TV and BETi or venetoclax induced synergistic in vitro lethality and reduced AML burden, improving survival of NSG mice harboring xenografts of AML with 3q26.2 lesions.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Animals , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , MDS1 and EVI1 Complex Locus Protein/genetics , MDS1 and EVI1 Complex Locus Protein/metabolism , Nuclear Proteins/genetics , Antineoplastic Agents/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Epigenesis, Genetic , Proto-Oncogenes , Bromodomain Containing Proteins , Cell Cycle Proteins/genetics
16.
Cancer Res Commun ; 3(12): 2640-2652, 2023 12 29.
Article in English | MEDLINE | ID: mdl-38047594

ABSTRACT

Obesity is a significant global health concern. Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis (NASH) are common risk factors for hepatocellular carcinoma (HCC) and are closely associated with metabolic comorbidities, including obesity and diabetes. The TP53 tumor suppressor is the most frequently mutated gene in liver cancers, with half of these alterations being missense mutations. These mutations produce highly abundant proteins in cancer cells which have both inhibitory effects on wildtype (WT) p53, and gain-of-function (GOF) activities that contribute to tumor progression. A Western diet increases p53 activity in the liver. To elucidate the functional consequences of Trp53 mutations in a NASH-driven liver tumorigenesis model, we generated somatic mouse models with Trp53 deletion or the missense hotspot mutant p53R245W only in hepatocytes and placed mice on a high-fat, choline-deficient diet. p53R245W in the presence of diet increased fatty liver, compensatory proliferation in the liver parenchyma, and enriched genes of tumor-promoting pathways such as KRAS signaling, MYC, and epithelial-mesenchymal transition when compared with controls in the premalignant liver. Moreover, p53R245W suppressed transcriptional activity of WT p53 in the liver in vivo under metabolic challenges, and shortened survival and doubling of HCC incidence as compared with control heterozygous mice. Complete loss of Trp53 also significantly accelerated liver tumor incidence and lowered time-to-tumor development compared with WT controls. p53R245W GOF properties increased carcinoma initiation, fueled mixed hepatocholangial carcinoma incidence, and tripled metastatic disease. Collectively, our in vivo studies indicate that p53R245W has stronger tumor promoting activities than Trp53 loss in the context of NASH. SIGNIFICANCE: Using somatic NASH-driven mouse models with p53 deletion or mutant p53R245W only in hepatocytes, we discovered that p53R245W increased carcinoma initiation, fueled hepatocholangial carcinoma incidence, and tripled metastases.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/genetics , Carcinoma, Hepatocellular/genetics , Tumor Suppressor Protein p53/genetics , Liver Neoplasms/genetics , Carcinogenesis/genetics , Mutation , Disease Models, Animal , Obesity/complications
17.
Nat Commun ; 14(1): 7884, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036539

ABSTRACT

Wilms tumors are highly curable in up to 90% of cases with a combination of surgery and radio-chemotherapy, but treatment-resistant types such as diffuse anaplastic Wilms tumors pose significant therapeutic challenges. Our multi-omics profiling unveils a distinct desert-like diffuse anaplastic Wilms tumor subtype marked by immune/stromal cell depletion, TP53 alterations, and cGAS-STING pathway downregulation, accounting for one-third of all diffuse anaplastic cases. This subtype, also characterized by reduced CD8 and CD3 infiltration and active oncogenic pathways involving histone deacetylase and DNA repair, correlates with poor clinical outcomes. These oncogenic pathways are found to be conserved in anaplastic Wilms tumor cell models. We identify histone deacetylase and/or WEE1 inhibitors as potential therapeutic vulnerabilities in these tumors, which might also restore tumor immunogenicity and potentially enhance the effects of immunotherapy. These insights offer a foundation for predicting outcomes and personalizing treatment strategies for aggressive pediatric Wilms tumors, tailored to individual immunological landscapes.


Subject(s)
Kidney Neoplasms , Wilms Tumor , Child , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Kidney Neoplasms/metabolism , Wilms Tumor/genetics , Wilms Tumor/therapy , Histone Deacetylases
18.
Cell Rep Med ; 4(11): 101287, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37967556

ABSTRACT

The efficacy of immune checkpoint inhibitors varies in clear-cell renal cell carcinoma (ccRCC), with notable primary resistance among patients. Here, we integrate epigenetic (DNA methylation) and transcriptome data to identify a ccRCC subtype characterized by cancer-specific promoter hypermethylation and epigenetic silencing of Polycomb targets. We develop and validate an index of methylation-based epigenetic silencing (iMES) that predicts primary resistance to immune checkpoint inhibition (ICI) in the BIONIKK trial. High iMES is associated with VEGF pathway silencing, endothelial cell depletion, immune activation/suppression, EZH2 activation, BAP1/SETD2 deficiency, and resistance to ICI. Combination therapy with hypomethylating agents or tyrosine kinase inhibitors may benefit patients with high iMES. Intriguingly, tumors with low iMES exhibit increased endothelial cells and improved ICI response, suggesting the importance of angiogenesis in ICI treatment. We also develop a transcriptome-based analogous system for extended applicability of iMES. Our study underscores the interplay between epigenetic alterations and tumor microenvironment in determining immunotherapy response.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , DNA Methylation/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Tumor Microenvironment/genetics , Endothelial Cells/metabolism , Immunotherapy
19.
Front Immunol ; 14: 1188831, 2023.
Article in English | MEDLINE | ID: mdl-37744342

ABSTRACT

Introduction: We present here a strategy to identify immunogenic neoantigen candidates from unique amino acid sequences at the junctions of fusion proteins which can serve as targets in the development of tumor vaccines for the treatment of breastcancer. Method: We mined the sequence reads of breast tumor tissue that are usually discarded as discordant paired-end reads and discovered cancer specific fusion transcripts using tissue from cancer free controls as reference. Binding affinity predictions of novel peptide sequences crossing the fusion junction were analyzed by the MHC Class I binding predictor, MHCnuggets. CD8+ T cell responses against the 15 peptides were assessed through in vitro Enzyme Linked Immunospot (ELISpot). Results: We uncovered 20 novel fusion transcripts from 75 breast tumors of 3 subtypes: TNBC, HER2+, and HR+. Of these, the NSFP1-LRRC37A2 fusion transcript was selected for further study. The 3833 bp chimeric RNA predicted by the consensus fusion junction sequence is consistent with a read-through transcription of the 5'-gene NSFP1-Pseudo gene NSFP1 (NSFtruncation at exon 12/13) followed by trans-splicing to connect withLRRC37A2 located immediately 3' through exon 1/2. A total of 15 different 8-mer neoantigen peptides discovered from the NSFP1 and LRRC37A2 truncations were predicted to bind to a total of 35 unique MHC class I alleles with a binding affinity of IC50<500nM.); 1 of which elicited a robust immune response. Conclusion: Our data provides a framework to identify immunogenic neoantigen candidates from fusion transcripts and suggests a potential vaccine strategy to target the immunogenic neopeptides in patients with tumors carrying the NSFP1-LRRC37A2 fusion.


Subject(s)
Breast Neoplasms , Cancer Vaccines , Mammary Neoplasms, Animal , Humans , Animals , Female , Breast Neoplasms/genetics , Genes, MHC Class I , Breast
20.
Proc Natl Acad Sci U S A ; 120(34): e2308807120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37579145

ABSTRACT

The TP53 tumor suppressor gene is mutated early in the majority of patients with triple-negative breast cancer (TNBC). The most frequent TP53 alterations are missense mutations that contribute to tumor aggressiveness. We developed an autochthonous somatic K14-Cre driven TNBC mouse model with p53R172H and p53R245W mutations in which mutant p53 can be toggled on and off genetically while leaving the tumor microenvironment intact and wild-type for p53. These mice develop TNBCs with a median latency of 1 y. Deletion of mutant p53R172H or p53R245W in vivo in these tumors blunts their tumor growth and significantly extends survival of mice. Downstream analyses revealed that deletion of mutant Trp53 activated the cyclic GMP-AMP Synthase-Stimulator of Interferon Genes pathway but did not cause apoptosis implicating other mechanisms of tumor regression. Furthermore, we determined that only tumors with stable mutant p53 are dependent on mutant p53 for growth.


Subject(s)
Triple Negative Breast Neoplasms , Tumor Suppressor Protein p53 , Animals , Humans , Mice , Genes, p53 , Mutation , Mutation, Missense , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL