Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
bioRxiv ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38168185

ABSTRACT

The current study in prostate cancer (PCa) focused on the genomic mechanisms at the cross-roads of pro-differentiation signals and the emergence of lineage plasticity. We explored an understudied cistromic mechanism involving RARγ's ability to govern AR cistrome-transcriptome relationships, including those associated with more aggressive PCa features. The RARγ complex in PCa cell models was enriched for canonical cofactors, as well as proteins involved in RNA processing and bookmarking. Identifying the repertoire of miR-96 bound and regulated gene targets, including those recognition elements marked by m6A, revealed their significant enrichment in the RARγ complex. RARγ significantly enhanced the AR cistrome, particularly in active enhancers and super-enhancers, and overlapped with the binding of bookmarking factors. Furthermore, RARγ expression led to nucleosome-free chromatin enriched with H3K27ac, and significantly enhanced the AR cistrome in G2/M cells. RARγ functions also antagonized the transcriptional actions of the lineage master regulator ONECUT2. Similarly, gene programs regulated by either miR-96 or antagonized by RARγ were enriched in alternative lineages and more aggressive PCa phenotypes. Together these findings reveal an under-investigated role for RARγ, modulated by miR-96, to bookmark enhancer sites during mitosis. These sites are required by the AR to promote transcriptional competence, and emphasize luminal differentiation, while antagonizing ONECUT2.

2.
Transplant Cell Ther ; 30(3): 255-267, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37913908

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a key treatment option for hematologic malignancies (HMs), although it carries significant risks. Up to 30% of patients relapse after allo-HSCT, of which up to 2% to 5% are donor-derived malignancies (DDMs). DDMs can arise from a germline genetic predisposition allele or clonal hematopoiesis (CH) in the donor. Increasingly, genetic testing reveals that patient and donor genetic factors contribute to the development of DDM and other allo-HSCT complications. Deleterious germline variants in CEBPA, DDX41, GATA2, and RUNX1 predispose to inferior allo-HSCT outcomes. DDM has been linked to donor-acquired somatic CH variants in DNMT3A, ASXL1, JAK2, and IDH2, often with additional new variants. We do not yet have evidence to standardize donor genetic sequencing prior to allo-HSCT. The presence of hereditary HM disorders should be considered in patients with myeloid malignancies and their related donors, and screening of unrelated donors should include family and personal history of cytopenia and HMs. Excellent multidisciplinary care is critical to ensure efficient timelines for screening and necessary discussions among medical oncologists, genetic counselors, recipients, and potential donors. After allo-HSCT, HM relapse monitoring with genetic testing effectively results in genetic sequencing of the donor, as the transplanted hematopoietic system is donor-derived, which presents ethical challenges for disclosure to patients and donors. We encourage consideration of the recent National Marrow Donor Program policy that allows donors to opt-in for notification about detection of their genetic variants after allo-HSCT, with appropriate genetic counseling when feasible. We look forward to prospective investigation of the impact of germline and acquired somatic genetic variants on hematopoietic stem cell mobilization/engraftment, graft-versus-host disease, and DDM to facilitate improved outcomes through knowledge of genetic risk.


Subject(s)
Amides , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Sulfones , Humans , Prospective Studies , Transplantation, Homologous/adverse effects , Neoplasm Recurrence, Local/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Unrelated Donors , Hematologic Neoplasms/genetics , Hematologic Neoplasms/therapy , Morbidity , Recurrence
3.
Am J Hematol ; 98(6): 940-950, 2023 06.
Article in English | MEDLINE | ID: mdl-37052167

ABSTRACT

The role of minor histocompatibility antigens (mHAs) in mediating graft versus leukemia and graft versus host disease (GvHD) following allogeneic hematopoietic cell transplantation (alloHCT) is recognized but not well-characterized. By implementing improved methods for mHA prediction in two large patient cohorts, this study aimed to comprehensively explore the role of mHAs in alloHCT by analyzing whether (1) the number of predicted mHAs, or (2) individual mHAs are associated with clinical outcomes. The study population consisted of 2249 donor-recipient pairs treated for acute myeloid leukemia and myelodysplastic syndrome with alloHCT. A Cox proportional hazard model showed that patients with a class I mHA count greater than the population median had an increased hazard of GvHD mortality (hazard ratio [HR] = 1.39, 95% confidence interval [CI] = 1.01, 1.77, p = .046). Competing risk analyses identified the class I mHAs DLRCKYISL (GSTP), WEHGPTSLL (CRISPLD2), and STSPTTNVL (SERPINF2) were associated with increased GVHD mortality (HR = 2.84, 95% CI = 1.52, 5.31, p = .01), decreased leukemia-free survival (LFS) (HR = 1.94, 95% CI = 1.27, 2.95, p = .044), and increased disease-related mortality (DRM) (HR = 2.32, 95% CI = 1.5, 3.6, p = .008), respectively. One class II mHA YQEIAAIPSAGRERQ (TACC2) was associated with increased risk of treatment-related mortality (TRM) (HR = 3.05, 95% CI = 1.75, 5.31, p = .02). WEHGPTSLL and STSPTTNVL were both present within HLA haplotype B*40:01-C*03:04 and showed a positive dose-response relationship with increased all-cause mortality and DRM and decreased LFS, indicating these two mHAs contribute to the risk of mortality in an additive manner. Our study reports the first large-scale investigation of the associations of predicted mHA peptides with clinical outcomes following alloHCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Minor Histocompatibility Antigens/genetics , Transplantation, Homologous/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Leukemia, Myeloid, Acute/therapy , Retrospective Studies
4.
Cancer Res Commun ; 3(4): 621-639, 2023 04.
Article in English | MEDLINE | ID: mdl-37082578

ABSTRACT

African American (AA) prostate cancer associates with vitamin D3 deficiency, but vitamin D receptor (VDR) genomic actions have not been investigated in this context. We undertook VDR proteogenomic analyses in European American (EA) and AA prostate cell lines and four clinical cohorts. Rapid immunoprecipitation mass spectrometry of endogenous protein (RIME) analyses revealed that nonmalignant AA RC43N prostate cells displayed the greatest dynamic protein content in the VDR complex. Likewise, in AA cells, Assay for Transposase-Accessible Chromatin using sequencing established greater 1α,25(OH)2D3-regulated chromatin accessibility, chromatin immunoprecipitation sequencing revealed significant enhancer-enriched VDR cistrome, and RNA sequencing identified the largest 1α,25(OH)2D3-dependent transcriptome. These VDR functions were significantly corrupted in the isogenic AA RC43T prostate cancer cells, and significantly distinct from EA cell models. We identified reduced expression of the chromatin remodeler, BAZ1A, in three AA prostate cancer cohorts as well as RC43T compared with RC43N. Restored BAZ1A expression significantly increased 1α,25(OH)2D3-regulated VDR-dependent gene expression in RC43T, but not HPr1AR or LNCaP cells. The clinical impact of VDR cistrome-transcriptome relationships were tested in three different clinical prostate cancer cohorts. Strikingly, only in AA patients with prostate cancer, the genes bound by VDR and/or associated with 1α,25(OH)2D3-dependent open chromatin (i) predicted progression from high-grade prostatic intraepithelial neoplasia to prostate cancer; (ii) responded to vitamin D3 supplementation in prostate cancer tumors; (iii) differentially responded to 25(OH)D3 serum levels. Finally, partial correlation analyses established that BAZ1A and components of the VDR complex identified by RIME significantly strengthened the correlation between VDR and target genes in AA prostate cancer only. Therefore, VDR transcriptional control is most potent in AA prostate cells and distorted through a BAZ1A-dependent control of VDR function. Significance: Our study identified that genomic ancestry drives the VDR complex composition, genomic distribution, and transcriptional function, and is disrupted by BAZ1A and illustrates a novel driver for AA prostate cancer.


Subject(s)
Prostatic Neoplasms , Receptors, Calcitriol , Male , Humans , Receptors, Calcitriol/genetics , Transcriptome/genetics , Black or African American/genetics , Prostatic Neoplasms/genetics , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics
5.
Blood Adv ; 7(9): 1635-1649, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36477467

ABSTRACT

T-cell responses to minor histocompatibility antigens (mHAs) mediate graft-versus-leukemia (GVL) effects and graft-versus-host disease (GVHD) in allogeneic hematopoietic cell transplantation. Therapies that boost T-cell responses improve allogeneic hematopoietic cell transplant (alloHCT) efficacy but are limited by concurrent increases in the incidence and severity of GVHD. mHAs with expression restricted to hematopoietic tissue (GVL mHAs) are attractive targets for driving GVL without causing GVHD. Prior work to identify mHAs has focused on a small set of mHAs or population-level single-nucleotide polymorphism-association studies. We report the discovery of a large set of novel GVL mHAs based on predicted immunogenicity, tissue expression, and degree of sharing among donor-recipient pairs (DRPs) in the DISCOVeRY-BMT data set of 3231 alloHCT DRPs. The total number of predicted mHAs varied by HLA allele, and the total number and number of each class of mHA significantly differed by recipient genomic ancestry group. From the pool of predicted mHAs, we identified the smallest sets of GVL mHAs needed to cover 100% of DRPs with a given HLA allele. We used mass spectrometry to search for high-population frequency mHAs for 3 common HLA alleles. We validated 24 predicted novel GVL mHAs that are found cumulatively within 98.8%, 60.7%, and 78.9% of DRPs within DISCOVeRY-BMT that express HLA-A∗02:01, HLA-B∗35:01, and HLA-C∗07:02, respectively. We confirmed the immunogenicity of an example novel mHA via T-cell coculture with peptide-pulsed dendritic cells. This work demonstrates that the identification of shared mHAs is a feasible and promising technique for expanding mHA-targeting immunotherapeutics.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia , Humans , Graft vs Host Disease/immunology , Leukemia/genetics , Leukemia/therapy , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/immunology , Transplantation, Homologous , Male , Female , Adolescent , Young Adult , Adult , Middle Aged , HLA Antigens/immunology , T-Lymphocytes/immunology , Dendritic Cells/immunology
6.
Hum Mol Genet ; 31(18): 3133-3143, 2022 09 10.
Article in English | MEDLINE | ID: mdl-35554533

ABSTRACT

Polygenic risk scores (PRSs) are useful for predicting breast cancer risk, but the prediction accuracy of existing PRSs in women of African ancestry (AA) remains relatively low. We aim to develop optimal PRSs for the prediction of overall and estrogen receptor (ER) subtype-specific breast cancer risk in AA women. The AA dataset comprised 9235 cases and 10 184 controls from four genome-wide association study (GWAS) consortia and a GWAS study in Ghana. We randomly divided samples into training and validation sets. We built PRSs using individual-level AA data by a forward stepwise logistic regression and then developed joint PRSs that combined (1) the PRSs built in the AA training dataset and (2) a 313-variant PRS previously developed in women of European ancestry. PRSs were evaluated in the AA validation set. For overall breast cancer, the odds ratio per standard deviation of the joint PRS in the validation set was 1.34 [95% confidence interval (CI): 1.27-1.42] with the area under receiver operating characteristic curve (AUC) of 0.581. Compared with women with average risk (40th-60th PRS percentile), women in the top decile of the PRS had a 1.98-fold increased risk (95% CI: 1.63-2.39). For PRSs of ER-positive and ER-negative breast cancer, the AUCs were 0.608 and 0.576, respectively. Compared with existing methods, the proposed joint PRSs can improve prediction of breast cancer risk in AA women.


Subject(s)
Breast Neoplasms , Genome-Wide Association Study , Breast Neoplasms/genetics , Female , Genetic Predisposition to Disease , Humans , Multifactorial Inheritance/genetics , Receptors, Estrogen/genetics , Risk Factors
8.
EClinicalMedicine ; 40: 101093, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34746714

ABSTRACT

BACKGROUND: Identification of non-human leukocyte antigen (HLA) genetic risk factors could improve survival after allogeneic blood or marrow transplant (BMT) through matching at additional loci or individualizing risk prediction. We hypothesized that non-HLA loci contributed significantly to 1-year overall survival (OS), disease related mortality (DRM) or transplant related mortality (TRM) after unrelated donor (URD)BMT. METHODS: We performed a genome-wide association study (GWAS) in 2,887 acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and acute lymphoblastic leukemia (ALL) patients and their ≥8/8 HLA-matched URDs comprising two independent cohorts treated from 2000-2011. FINDINGS: Using meta-analyses of both cohorts, genome-wide significant associations (p < 5 × 10-8) were identified in: recipient genomes with OS at MBNL1 (rs9990017, HR = 1.4, 95% CI 1.24-1.56, p = 3.3 × 10-8) and donor-recipient genotype mismatch with OS at LINC02774 (rs10927108, HR = 1.34, 95% CI 1.21-1.48, p = 2.0 × 10-8); donor genomes with DRM at PCNX4 (rs79076914, HR = 1.7, 95% CI 1.41-2.05, p = 3.15 × 10-8), LINC01194 (rs79498125, HR = 1.86, 95% CI 1.49-2.31, p = 2.84 × 10-8), ARID5B (rs2167710, HR = 1.5, 95% CI 1.31-1.73, p = 6.9 × 10-9) and CT49 (rs32250, HR = 1.44, 95% CI1.26-1.64, p = 2.6 × 10-8); recipient genomes at PILRB with TRM (rs141591562, HR = 2.33, 95% CI 1.74-3.12, p = 1.26 × 10-8) and donor-recipient genotype mismatch between EPGN and MTHF2DL with TRM (rs75868097, HR = 2.66, 95% CI 1.92-3.58, p = 4.6 × 10-9). Results publicly available at https://fuma.ctglab.nl/browse. INTERPRETATION: These data provide the first evidence that non-HLA common genetic variation at novel loci with biochemical function significantly impacts 1-year URD-BMT survival. Our findings have implications for donor selection, could guide treatment strategies and provide individualized risk prediction after future validation and functional studies. FUNDING: This project was funded by grants from the National Institutes of Health, USA.

9.
Nat Commun ; 12(1): 6233, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34716350

ABSTRACT

Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 × 10-8; KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 × 10-10; HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA).


Subject(s)
HLA Antigens/genetics , Leukemia, Myeloid, Acute/genetics , Polymorphism, Single Nucleotide , Aldehyde Reductase/genetics , Case-Control Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Leukemia, Myeloid, Acute/mortality , Middle Aged , Reproducibility of Results , White People/genetics
10.
Front Genet ; 12: 554948, 2021.
Article in English | MEDLINE | ID: mdl-34220922

ABSTRACT

The role of common genetic variation in susceptibility to acute myeloid leukemia (AML), and myelodysplastic syndrome (MDS), a group of rare clonal hematologic disorders characterized by dysplastic hematopoiesis and high mortality, remains unclear. We performed AML and MDS genome-wide association studies (GWAS) in the DISCOVeRY-BMT cohorts (2,309 cases and 2,814 controls). Association analysis based on subsets (ASSET) was used to conduct a summary statistics SNP-based analysis of MDS and AML subtypes. For each AML and MDS case and control we used PrediXcan to estimate the component of gene expression determined by their genetic profile and correlate this imputed gene expression level with risk of developing disease in a transcriptome-wide association study (TWAS). ASSET identified an increased risk for de novo AML and MDS (OR = 1.38, 95% CI, 1.26-1.51, Pmeta = 2.8 × 10-12) in patients carrying the T allele at s12203592 in Interferon Regulatory Factor 4 (IRF4), a transcription factor which regulates myeloid and lymphoid hematopoietic differentiation. Our TWAS analyses showed increased IRF4 gene expression is associated with increased risk of de novo AML and MDS (OR = 3.90, 95% CI, 2.36-6.44, Pmeta = 1.0 × 10-7). The identification of IRF4 by both GWAS and TWAS contributes valuable insight on the role of genetic variation in AML and MDS susceptibility.

11.
Nat Commun ; 12(1): 4198, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34234117

ABSTRACT

Our study describes breast cancer risk loci using a cross-ancestry GWAS approach. We first identify variants that are associated with breast cancer at P < 0.05 from African ancestry GWAS meta-analysis (9241 cases and 10193 controls), then meta-analyze with European ancestry GWAS data (122977 cases and 105974 controls) from the Breast Cancer Association Consortium. The approach identifies four loci for overall breast cancer risk [1p13.3, 5q31.1, 15q24 (two independent signals), and 15q26.3] and two loci for estrogen receptor-negative disease (1q41 and 7q11.23) at genome-wide significance. Four of the index single nucleotide polymorphisms (SNPs) lie within introns of genes (KCNK2, C5orf56, SCAMP2, and SIN3A) and the other index SNPs are located close to GSTM4, AMPD2, CASTOR2, and RP11-168G16.2. Here we present risk loci with consistent direction of associations in African and European descendants. The study suggests that replication across multiple ancestry populations can help improve the understanding of breast cancer genetics and identify causal variants.


Subject(s)
Black People/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Quantitative Trait Loci , White People/genetics , Female , Genome-Wide Association Study , Humans , Introns , Polymorphism, Single Nucleotide
12.
Sci Rep ; 11(1): 15004, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34294836

ABSTRACT

To improve risk stratification and treatment decisions for patients with acute myeloid leukemia (AML) undergoing hematopoietic cell transplantation (HCT). We used SNP-array data from the DISCOVeRY-BMT study to detect chromosomal aberrations in pre-HCT peripheral blood (collected 2-4 weeks before the administration of conditioning regimen) from 1974 AML patients who received HCT between 2000 and 2011. All aberrations detected in ≥ 10 patients were tested for their association with overall survival (OS), separately by remission status, using the Kaplan-Meier estimator. Cox regression models were used for multivariable analyses. Follow-up was through January 2019. We identified 701 unique chromosomal aberrations in 285 patients (7% of 1438 in complete remission (CR) and 36% of 536 not in CR). Copy-neutral loss-of-heterozygosity (CNLOH) in chr17p in CR patients (3-year OS = 20% vs. 50%, with and without chr17p CNLOH, p = 0.0002), and chr13q in patients not in CR (3-year OS = 4% vs. 26%, with and without chr13q CNLOH, p < 0.0001) are risk factors for poor survival. Models adjusted for clinical factors showed approximately three-fold excess risk of post-HCT mortality with chr17p CNLOH in CR patients (hazard ratio, HR = 3.39, 95% confidence interval CI 1.74-6.60, p = 0.0003), or chr13q CNLOH in patients not in CR (HR = 2.68, 95% CI 1.75-4.09, p < 0.0001). The observed mortality was mostly driven by post-HCT relapse (HR = 2.47, 95% CI 1.01-6.02, p = 0.047 for chr17p CNLOH in CR patients, and HR = 2.58, 95% CI 1.63-4.08, p < 0.0001 for chr13q CNLOH in patients not in CR. Pre-transplant CNLOH in chr13q or chr17p predicts risk of poor outcomes after unrelated donor HCT in AML patients. A large prospective study is warranted to validate the results and evaluate novel strategies to improve survival in those patients.


Subject(s)
Chromosome Aberrations , Hematopoietic Stem Cell Transplantation/adverse effects , Leukemia, Myeloid, Acute/therapy , Tissue Donors , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Hematopoietic Stem Cell Transplantation/methods , Humans , Infant , Male , Middle Aged , Preoperative Period , Prognosis , Treatment Outcome , Unrelated Donors , Young Adult
13.
Transplant Cell Ther ; 27(10): 836.e1-836.e7, 2021 10.
Article in English | MEDLINE | ID: mdl-34174468

ABSTRACT

Graft-versus-host-disease (GVHD) is a multistep process that involves T-cell recognition and priming toward alloantigen, expansion, acquisition of effector function, and repeated tissue injury, resulting in clinical manifestations of the disease. All of these processes have considerable metabolic demands and understanding the key role of mitochondria in cellular metabolism as it relates to GVHD has increased significantly. Mitochondrial DNA (mtDNA) haplotypes have been linked to functional differences in vitro, suggesting they have functional differences at an organismal level. We previously used mtDNA typing to assess the impact of mtDNA haplotypes on outcomes of ~400 allo-HCT patients. This pilot study identified uncommon mtDNA haplotypes potentially associated with inferior outcomes. We sought to validate pilot findings of associations between donor and recipient mitochondrial haplotypes and transplant outcome. We examined a cohort of 4143 donor-recipient pairs obtained from the Center for International Blood and Marrow Transplant Research. MtDNA was extracted from whole blood or peripheral blood mononuclear cells from donors and recipients and sequenced to discern haplotype. We used multiple regression analysis to examine the independent association of mtDNA haplotype with overall survival and grade III-IV acute GVHD (aGVHD) adjusting for known risk factors for poor transplant outcome. Neither recipient nor donor mtDNA haplotype reached groupwise significance for overall survival (P =.26 and .39, respectively) or grade III-IV aGVHD (P = .68 and.57, respectively). Adjustment for genomically determined ancestry in the subset of donor-recipient pairs for which this was available did not materially change results. We conclude that our original finding was due to chance in a small sample size and that there is essentially no evidence that mtDNA haplotype or haplotype mismatch contributes to risk of serious outcomes after allogeneic transplantation.


Subject(s)
Hematopoietic Stem Cell Transplantation , Unrelated Donors , Haplotypes , Humans , Leukocytes, Mononuclear , Mitochondria , Pilot Projects
14.
J Natl Cancer Inst ; 113(9): 1168-1176, 2021 09 04.
Article in English | MEDLINE | ID: mdl-33769540

ABSTRACT

BACKGROUND: Polygenic risk scores (PRSs) have been demonstrated to identify women of European, Asian, and Latino ancestry at elevated risk of developing breast cancer (BC). We evaluated the performance of existing PRSs trained in European ancestry populations among women of African ancestry. METHODS: We assembled genotype data for women of African ancestry, including 9241 case subjects and 10 193 control subjects. We evaluated associations of 179- and 313-variant PRSs with overall and subtype-specific BC risk. PRS discriminatory accuracy was assessed using area under the receiver operating characteristic curve. We also evaluated a recalibrated PRS, replacing the index variant with variants in each region that better captured risk in women of African ancestry and estimated lifetime absolute risk of BC in African Americans by PRS category. RESULTS: For overall BC, the odds ratio per SD of the 313-variant PRS (PRS313) was 1.27 (95% confidence interval [CI] = 1.23 to 1.31), with an area under the receiver operating characteristic curve of 0.571 (95% CI = 0.562 to 0.579). Compared with women with average risk (40th-60th PRS percentile), women in the top decile of PRS313 had a 1.54-fold increased risk (95% CI = 1.38-fold to 1.72-fold). By age 85 years, the absolute risk of overall BC was 19.6% for African American women in the top 1% of PRS313 and 6.7% for those in the lowest 1%. The recalibrated PRS did not improve BC risk prediction. CONCLUSION: The PRSs stratify BC risk in women of African ancestry, with attenuated performance compared with that reported in European, Asian, and Latina populations. Future work is needed to improve BC risk stratification for women of African ancestry.


Subject(s)
Breast Neoplasms , Aged, 80 and over , Asian People , Black People/genetics , Breast Neoplasms/genetics , Female , Genetic Predisposition to Disease , Humans , Risk Factors
15.
J Natl Compr Canc Netw ; 19(9): 1027-1036, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33770752

ABSTRACT

BACKGROUND: Gauging fitness remains a challenge among older adults with hematologic malignancies, and interventions to restore function are lacking. We pilot a structured exercise intervention and novel biologic correlates of aging using epigenetic clocks and markers of immunosenescence to evaluate changes in function and clinical outcomes. METHODS: Older adults (n=30) with hematologic malignancy actively receiving treatment were screened and enrolled in a 6-month exercise intervention, the Otago Exercise Programme (OEP). The impact of the OEP on geriatric assessment metrics and health-related quality of life were captured. Clinical outcomes of overall survival and hospital utilization (inpatient length of stay and emergency department use) in relationship to geriatric deficits were analyzed. RESULTS: Older adults (median age, 75.5 years [range, 62-83 years]) actively receiving treatment were enrolled in the OEP. Instrumental activities of daily living and physical health scores (PHS) increased significantly with the OEP intervention (median PHS: visit 1, 55 [range, 0-100]; visit 2, 70 [range, 30-100]; P<.01). Patient-reported Karnofsky performance status increased significantly, and the improvement was sustained (median [range]: visit 1, 80 [40-100]; visit 3, 90 [50-100]; P=.05). Quality of life (Patient-Reported Outcome Measurement Information System [PROMIS]) improved significantly by the end of the 6-month period (median [range]: visit 1, 32.4 [19.9-47.7]; visit 3, 36.2 [19.9-47.7]; P=.01]. Enhanced measures of gait speed and balance, using the Short Physical Performance Battery scores, were associated with a 20% decrease in risk of death (hazard ratio, 0.80; 95% CI, 0.65-0.97; P=.03) and a shorter hospital length of stay (decrease of 1.29 days; 95% CI, -2.46 to -0.13; P=.03). Peripheral blood immunosenescent markers were analyzed in relationship to clinical frailty and reports of mPhenoAge epigenetic analysis are preliminarily reported. Chronologic age had no relationship to overall survival, length of stay, or emergency department utilization. CONCLUSIONS: The OEP was effective in improving quality of life, and geriatric tools predicted survival and hospital utilization among older adults with hematologic malignancies.


Subject(s)
Activities of Daily Living , Hematologic Neoplasms , Aged , Aging , Geriatric Assessment , Hematologic Neoplasms/therapy , Humans , Phenotype , Quality of Life
17.
Lancet Haematol ; 7(10): e715-e723, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32976751

ABSTRACT

BACKGROUND: The interferon lambda 4 gene (IFNL4) regulates immune responses by controlling the production of IFNλ4, a type III interferon. We hypothesised that IFNλ4 could play a role in infection clearance or alloreactivity in patients with acute leukaemia who received a myeloablative 10/10 HLA-matched haematopoietic stem-cell transplantation (HSCT). Therefore, we aimed to assess the association between recipient and donor IFNL4 genotype with post-HSCT survival outcomes in patients with acute leukaemia. METHODS: We did a two-stage retrospective cohort study using the Center for International Blood and Marrow Transplant Research (CIBMTR) repository and database, in which nearly all patients underwent the procedure in the USA. We included patients with acute myeloid leukaemia or acute lymphocytic leukaemia, who received a HSCT at any age from an unrelated 10/10 HLA-matched donor, with a myeloablative conditioning regimen, between Jan 1, 2000, and Dec 31, 2008, and had a pre-HSCT recipient or donor blood sample available. The discovery dataset included patients from an existing National Cancer Institute (NCI) cohort of the CIBMTR database, in which donor and recipient IFNL4 polymorphisms (rs368234815, rs12979860, and rs117648444) were genotyped with TaqMan assays. According to their genotype, donors and recipients were categorised into IFNL4-positive, if they had at least one copy of the allele that supports the production of IFNλ4, or IFNL4-null for the analyses. The findings were independently validated with patients from the DISCOVeRY-BMT cohort (validation dataset) with existing Illumina array genotype data. We also did a combined analysis using data from patients included in both the NCI and DISCOVeRY-BMT cohorts. FINDINGS: We assessed 404 patients (who had a HSCT from Jan 9, 2004, to Dec 26, 2008) in the discovery dataset and 1245 patients in the validation dataset (HSCT Jan 7, 2000, to Dec 26, 2008). The combined analysis included 1593 overlapping participants in both cohorts. Donor, but not recipient IFNL4-positive genotype was associated with increased risk of non-relapse mortality (HR 1·60, 95% CI 1·23-2·10; p=0·0005 in the discovery dataset; 1·22, 1·05-1·40; p=0·0072 in the validation dataset; and 1·27, 1·12-1·45; p=0·0001 in the combined dataset). Associations with post-HSCT overall survival were as follows: HR 1·24, 95% CI 1·02-1·51; p=0·034 in the discovery dataset; 1·10, 0·98-1·20; p=0·10 in the validation dataset; and 1·11, 1·02-1·22; p=0·018 in the combined dataset. INTERPRETATION: Prioritising HSCT donors with the IFNL4-null genotype might decrease non-relapse mortality and improve overall survival without substantially limiting the donor pool. If these findings are validated, IFNL4 genotype could be added to the donor selection algorithm. FUNDING: The National Cancer Institute Intramural Research Program. For full funding list see Acknowledgments.


Subject(s)
Hematopoietic Stem Cell Transplantation , Interleukins/genetics , Leukemia, Myeloid, Acute/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Adult , Female , Genotype , Hematopoietic Stem Cell Transplantation/mortality , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Retrospective Studies , Treatment Outcome , Unrelated Donors , Young Adult
18.
BMC Med Genomics ; 13(Suppl 9): 133, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32957998

ABSTRACT

BACKGROUND: Developing binary classification rules based on SNP observations has been a major challenge for many modern bioinformatics applications, e.g., predicting risk of future disease events in complex conditions such as cancer. Small-sample, high-dimensional nature of SNP data, weak effect of each SNP on the outcome, and highly non-linear SNP interactions are several key factors complicating the analysis. Additionally, SNPs take a finite number of values which may be best understood as ordinal or categorical variables, but are treated as continuous ones by many algorithms. METHODS: We use the theory of high dimensional model representation (HDMR) to build appropriate low dimensional glass-box models, allowing us to account for the effects of feature interactions. We compute the second order HDMR expansion of the log-likelihood ratio to account for the effects of single SNPs and their pairwise interactions. We propose a regression based approach, called linear approximation for block second order HDMR expansion of categorical observations (LABS-HDMR-CO), to approximate the HDMR coefficients. We show how HDMR can be used to detect pairwise SNP interactions, and propose the fixed pattern test (FPT) to identify statistically significant pairwise interactions. RESULTS: We apply LABS-HDMR-CO and FPT to synthetically generated HAPGEN2 data as well as to two GWAS cancer datasets. In these examples LABS-HDMR-CO enjoys superior accuracy compared with several algorithms used for SNP classification, while also taking pairwise interactions into account. FPT declares very few significant interactions in the small sample GWAS datasets when bounding false discovery rate (FDR) by 5%, due to the large number of tests performed. On the other hand, LABS-HDMR-CO utilizes a large number of SNP pairs to improve its prediction accuracy. In the larger HAPGEN2 dataset FTP declares a larger portion of SNP pairs used by LABS-HDMR-CO as significant. CONCLUSION: LABS-HDMR-CO and FPT are interesting methods to design prediction rules and detect pairwise feature interactions for SNP data. Reliably detecting pairwise SNP interactions and taking advantage of potential interactions to improve prediction accuracy are two different objectives addressed by these methods. While the large number of potential SNP interactions may result in low power of detection, potentially interacting SNP pairs, of which many might be false alarms, can still be used to improve prediction accuracy.


Subject(s)
Computational Biology/methods , Polymorphism, Single Nucleotide , Algorithms , Genome-Wide Association Study , Likelihood Functions
19.
J Clin Oncol ; 38(8): 804-814, 2020 03 10.
Article in English | MEDLINE | ID: mdl-31855498

ABSTRACT

PURPOSE: Despite reported widespread use of dietary supplements during cancer treatment, few empirical data with regard to their safety or efficacy exist. Because of concerns that some supplements, particularly antioxidants, could reduce the cytotoxicity of chemotherapy, we conducted a prospective study ancillary to a therapeutic trial to evaluate associations between supplement use and breast cancer outcomes. METHODS: Patients with breast cancer randomly assigned to an intergroup metronomic trial of cyclophosphamide, doxorubicin, and paclitaxel were queried on their use of supplements at registration and during treatment (n =1,134). Cox proportional hazards regression adjusting for clinical and lifestyle variables was used. Recurrence and survival were indexed at 6 months after enrollment using a landmark approach. RESULTS: There were indications that use of any antioxidant supplement (vitamins A, C, and E; carotenoids; coenzyme Q10) both before and during treatment was associated with an increased hazard of recurrence (adjusted hazard ratio [adjHR], 1.41; 95% CI, 0.98 to 2.04; P = .06) and, to a lesser extent, death (adjHR, 1.40; 95% CI, 0.90 to 2.18; P = .14). Relationships with individual antioxidants were weaker perhaps because of small numbers. For nonantioxidants, vitamin B12 use both before and during chemotherapy was significantly associated with poorer disease-free survival (adjHR, 1.83; 95% CI, 1.15 to 2.92; P < .01) and overall survival (adjHR, 2.04; 95% CI, 1.22 to 3.40; P < .01). Use of iron during chemotherapy was significantly associated with recurrence (adjHR, 1.79; 95% CI, 1.20 to 2.67; P < .01) as was use both before and during treatment (adjHR, 1.91; 95% CI, 0.98 to 3.70; P = .06). Results were similar for overall survival. Multivitamin use was not associated with survival outcomes. CONCLUSION: Associations between survival outcomes and use of antioxidant and other dietary supplements both before and during chemotherapy are consistent with recommendations for caution among patients when considering the use of supplements, other than a multivitamin, during chemotherapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Dietary Supplements , Administration, Metronomic , Antioxidants/administration & dosage , Cyclophosphamide/administration & dosage , Disease-Free Survival , Doxorubicin/administration & dosage , Female , Humans , Middle Aged , Paclitaxel/administration & dosage , Proportional Hazards Models , Vitamins/administration & dosage
20.
Blood Adv ; 3(16): 2512-2524, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31455667

ABSTRACT

Graft-versus-host disease (GVHD) and infections are the 2 main causes of death without relapse after allogeneic hematopoietic cell transplantation (HCT). Elevated soluble serum simulation-2 (sST2), the product of IL1RL1 in plasma/serum post-HCT, is a validated GVHD biomarker. Hundreds of SNPs at 2q12.1 have been shown to be strongly associated with sST2 concentrations in healthy populations. We therefore hypothesized that the donor genetic variants in IL1RL1 correlate with sST2 protein levels associated with patient survival outcomes after HCT. We used DISCOVeRY-BMT (Determining the Influence of Susceptibility Conveying Variants Related to 1-Year Mortality after Blood and Marrow Transplantation), a genomic study of >3000 donor-recipient pairs, to inform our hypothesis. We first measured pre-HCT plasma/serum sST2 levels in a subset of DISCOVeRY-BMT donors (n = 757) and tested the association of donor sST2 levels with donor single nucleotide polymorphisms (SNPs) in the 2q12.1 region. Donor SNPs associated with sST2 levels were then tested for association with recipient death caused by acute GVHD (aGVHD)-, infection-, and transplant-related mortality in cohorts 1 and 2. Meta-analyses of cohorts 1 and 2 were performed using fixed-effects inverse variance weighting, and P values were corrected for multiple comparisons. Donor risk alleles in rs22441131 (P meta = .00026) and rs2310241 (P meta = .00033) increased the cumulative incidence of aGVHD death up to fourfold and were associated with high sST2 levels. Donor risk alleles at rs4851601 (P meta = 9.7 × 10-7), rs13019803 (P meta = 8.9 × 10-6), and rs13015714 (P meta = 5.3 × 10-4) increased cumulative incidence of infection death to almost sevenfold and were associated with low sST2 levels. These functional variants are biomarkers of infection or aGVHD death and could facilitate donor selection, prophylaxis, and a conditioning regimen to reduce post-HCT mortality.


Subject(s)
Biomarkers , Genetic Predisposition to Disease , Genetic Variation , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Interleukin-1 Receptor-Like 1 Protein/genetics , Adult , Computational Biology/methods , Female , Genotype , Graft vs Host Disease/mortality , Humans , Interleukin-1 Receptor-Like 1 Protein/metabolism , Linkage Disequilibrium , Male , Middle Aged , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Prognosis , Tissue Donors , Transplantation, Homologous , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...