Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.389
Filter
1.
Fish Physiol Biochem ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954179

ABSTRACT

The wild Onychostoma macrolepis, a species under national class II protection in China, lacks a specific compound feed for captive rearing. Understanding the dietary amino acid pattern is crucial for optimal feed formulation. This study aimed to investigate the effects of the four different dietary amino acid patterns, i.e., anchovy fishmeal protein (FMP, control group) and muscle protein (MP), whole-body protein (WBP), fish egg protein (FEP) of juvenile Onychostoma macrolepis, on the growth performance, body composition, intestinal morphology, enzyme activities, and the expression levels of gh, igf, mtor genes in juveniles. In a 12-week feeding trial with 240 juveniles (3.46±0.04g), the MP group demonstrated superior outcomes in growth performance (FBW, WGR, SGR), feed utilization efficiency (PER, PRE, FCR). Notably, it exhibited higher crude protein content in whole-body fish, enhanced amino acid composition in the liver, and favorable fatty acid health indices (AI, TI, h/H) in muscle compared to other groups (P < 0.05). Morphologically, the MP and FMP groups exhibited healthy features. Additionally, the MP group displayed significantly higher activities of TPS, ALP, and SOD, along with elevated expression levels of gh, igf, mtor genes, distinguishing it from the other groups (P < 0.05). This study illustrated that the amino acid pattern of MP emerged as a suitable dietary amino acid pattern for juvenile Onychostoma macrolepis. Furthermore, the findings provide valuable insights for formulating effective feeds in conserving and sustainably farming protected species, enhancing the research's broader ecological and aquacultural significance.

2.
Crit Care ; 28(1): 213, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956604

ABSTRACT

BACKGROUND: The multidimensional biological mechanisms underpinning acute respiratory distress syndrome (ARDS) continue to be elucidated, and early biomarkers for predicting ARDS prognosis are yet to be identified. METHODS: We conducted a multicenter observational study, profiling the 4D-DIA proteomics and global metabolomics of serum samples collected from patients at the initial stage of ARDS, alongside samples from both disease control and healthy control groups. We identified 28-day prognosis biomarkers of ARDS in the discovery cohort using the LASSO method, fold change analysis, and the Boruta algorithm. The candidate biomarkers were validated through parallel reaction monitoring (PRM) targeted mass spectrometry in an external validation cohort. Machine learning models were applied to explore the biomarkers of ARDS prognosis. RESULTS: In the discovery cohort, comprising 130 adult ARDS patients (mean age 72.5, 74.6% male), 33 disease controls, and 33 healthy controls, distinct proteomic and metabolic signatures were identified to differentiate ARDS from both control groups. Pathway analysis highlighted the upregulated sphingolipid signaling pathway as a key contributor to the pathological mechanisms underlying ARDS. MAP2K1 emerged as the hub protein, facilitating interactions with various biological functions within this pathway. Additionally, the metabolite sphingosine 1-phosphate (S1P) was closely associated with ARDS and its prognosis. Our research further highlights essential pathways contributing to the deceased ARDS, such as the downregulation of hematopoietic cell lineage and calcium signaling pathways, contrasted with the upregulation of the unfolded protein response and glycolysis. In particular, GAPDH and ENO1, critical enzymes in glycolysis, showed the highest interaction degree in the protein-protein interaction network of ARDS. In the discovery cohort, a panel of 36 proteins was identified as candidate biomarkers, with 8 proteins (VCAM1, LDHB, MSN, FLG2, TAGLN2, LMNA, MBL2, and LBP) demonstrating significant consistency in an independent validation cohort of 183 patients (mean age 72.6 years, 73.2% male), confirmed by PRM assay. The protein-based model exhibited superior predictive accuracy compared to the clinical model in both the discovery cohort (AUC: 0.893 vs. 0.784; Delong test, P < 0.001) and the validation cohort (AUC: 0.802 vs. 0.738; Delong test, P = 0.008). INTERPRETATION: Our multi-omics study demonstrated the potential biological mechanism and therapy targets in ARDS. This study unveiled several novel predictive biomarkers and established a validated prediction model for the poor prognosis of ARDS, offering valuable insights into the prognosis of individuals with ARDS.


Subject(s)
Biomarkers , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/blood , Male , Female , Aged , Biomarkers/blood , Biomarkers/analysis , Prognosis , Middle Aged , Proteomics/methods , Cohort Studies , Aged, 80 and over , Blood Proteins/analysis , Metabolomics/methods , Multiomics
3.
Environ Monit Assess ; 196(7): 675, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951302

ABSTRACT

Vegetation is an important link between land, atmosphere, and water, making its changes of great significance. However, existing research has predominantly focused on long-term vegetation changes, neglecting the intra-annual variations of vegetation. Hence, this study is based on the Enhanced Vegetation Index (EVI) data from 2000 to 2022, with a time step of 16 days, to analyze the intra-annual patterns of vegetation changes in China. The average intra-annual EVI values for each municipal-level administrative region were calculated, and the time-series k-means clustering algorithm was employed to divide these regions, exploring the spatial variations in China's intra-annual vegetation changes. Finally, the ridge regression and random forest methods were utilized to assess the drivers of intra-annual vegetation changes. The results showed that: (1) China's vegetation status exhibits a notable intra-annual variation pattern of "high in summer and low in winter," and the changes are more pronounced in the northern regions than in the southern regions; (2) the intra-annual vegetation changes exhibit remarkable regional disparities, and China can be optimally clustered into four distinct clusters, which align well with China's temperature and precipitation zones; and (3) the intra-annual vegetation changes demonstrate significant correlations with meteorological factors such as dew point temperature, precipitation, maximum temperature, and sea-level pressure. In conclusion, our study reveals the characteristics, spatial patterns and driving forces of intra-annual vegetation changes in China, which contribute to explaining ecosystem response mechanisms, providing valuable insights for ecological research and the formulation of ecological conservation and management strategies.


Subject(s)
Environmental Monitoring , Remote Sensing Technology , China , Seasons , Plants , Cluster Analysis , Ecosystem
4.
Vet Microbiol ; 296: 110171, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38981202

ABSTRACT

Intestinal pathogenic Escherichia coli (InPEC) is one of the most common causes of bacterial diarrhea in farm animals, including profuse neonatal diarrhea and post weaning diarrhea (PWD) in piglets. In this study, we investigated the prevalence of InPEC and associated primary virulence factors among 543 non-duplicate E. coli isolates from diarrheal pigs from 15 swine farms in southern China. Six major virulence genes associated with InPEC were identified among 69 (12.71 %) E. coli isolates and included est (6.62 %), K88 (4.79 %), elt (3.68 %), eae (1.47 %), stx2 (0.92 %) and F18 (0.55 %). Three pathotypes of InPEC were identified including ETEC (8.10 %), EPEC (1.29 %) and STEC/ETEC (0.92 %). In particular, K88 was only found in ETEC from breeding farms, whereas F18 was only present in STEC/ETEC hybrid from finishing farms. Whole genome sequence analysis of 37 E. coli isolates revealed that InPEC strains frequently co-carried multiple antibiotic resistance gene (ARG). est, elt and F18 were also found to co-locate with ARGs on a single IncFIB/IncFII plasmid. InPEC isolates from different pathotypes also possessed different profiles of virulence genes and antimicrobial resistance genes. Population structure analysis demonstrated that InPEC isolates from different pathotypes were highly heterogeneous whereas those of the same pathotype were extremely similar. Plasmid analysis revealed that K88 and/or est/elt were found on pGX18-2-like/pGX203-2-like and pGX203-1-like IncFII plasmids, while F18 and elt/est, as well as diverse ARGs were found to co-locate on IncFII/IncFIB plasmids with a non-typical backbone. Moreover, these key virulence genes were flanked by or adjacent to IS elements. Our findings indicated that both clonal expansion and horizontal spread of epidemic IncFII plasmids contributed to the prevalence of InPEC and the specific virulence genes (F4, F18, elt and est) in the tested swine farms.

5.
Front Physiol ; 15: 1361719, 2024.
Article in English | MEDLINE | ID: mdl-38989050

ABSTRACT

Objective: This study investigates the efficacy of training methodologies aimed at mitigating asymmetries in lower limb strength and explosiveness among basketball players. Methods: Thirty male university basketball athletes were enrolled in this research. Initial assessments were made regarding their physical attributes, strength, and explosiveness. Subsequently, the participants were randomly allocated into two groups: an experimental group (EG, n = 15) and a control group (CG, n = 15). Over 10 weeks, the EG engaged in a unilateral compound training regimen, incorporating resistance training exercises such as split squats, Bulgarian split squats, box step-ups, and single-leg calf raises (non-dominant leg: three sets of six repetitions; dominant leg: one set of six repetitions) and plyometric drills including lunge jumps, single-leg hops with back foot raise, single-leg lateral jumps, and single-leg continuous hopping (non-dominant leg: three sets of 12 repetitions; dominant leg: one set of 12 repetitions). The CG continued with their standard training routine. Assessments of limb asymmetry and athletic performance were conducted before and after the intervention to evaluate changes. Results: 1) Body morphology assessments showed limb length and circumference discrepancies of less than 3 cm. The initial average asymmetry percentages in the single-leg countermovement jump (SLCMJ) for jump height, power, and impulse were 15.56%, 12.4%, and 4.48%, respectively. 2) Post-intervention, the EG demonstrated a significant reduction in the asymmetry percentages of SLCMJ height and power (p < 0.01), along with improvements in the isometric mid-thigh pull (IMTP) test metrics (p < 0.05). 3) The EG also showed marked enhancements in the double-leg countermovement jump (CMJ) and standing long jump (SLJ) outcomes compared to the CG (p < 0.01), as well as in squat performance (p < 0.05). Conclusion: The 10-week unilateral compound training program effectively reduced the asymmetry in lower limb strength and explosiveness among elite male university basketball players, contributing to increased maximal strength and explosiveness.

6.
Sci Total Environ ; : 174618, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986687

ABSTRACT

Understanding the dynamics of the rumen microbiome is crucial for optimizing ruminal fermentation to improve feed efficiency and addressing concerns regarding antibiotic resistance in the livestock production industry. This study aimed to investigate the adaptive effects of microbiome and the properties of carbohydrate-active enzymes (CAZy) and antibiotic resistance genes (ARGs) in response to dietary protein shifts. Twelve Charolais bulls were randomly divided into two groups based on initial body weight: 1) Treatment (REC), where the animals received a 7 % CP diet in a 4-week restriction period, followed by a 13 % CP diet in a 2-week re-alimentation period; 2) Control (CON), where the animals were fed the 13 % CP diet both in the restriction period and the re-alimentation period. Protein restriction decreased the concentrations of acetate, propionate, isovalerate, glutamine, glutamate, and isoleucine (P < 0.05), while protein re-alimentation increased the concentrations of arginine, methionine sulfoxide, lysine, and glutamate (P < 0.05). Protein restriction decreased the relative abundances of Bacteroidota but increased Proteobacteria, with no difference observed after re-alimentation. Protein restriction decreased relative abundances of the genera Bacteroides, Prevotella, and Bifidobacterium. Following protein recovery, Escherichia was enriched in CON, while Pusillibacter was enriched in REC, indicating that distinct microbial adaptations to protein shifts. Protein restriction increased GH97 while reducing GH94 and GT35 compared to CON. Protein restriction decreased abundances of KO genes involved in VFA production pathways, while they were recovered in the re-alimentation period. Protein restriction reduced tet(W/32/O) abundances but increased those of tet(X), nimJ, and rpoB2. Following protein re-alimentation, there was a decrease in ErmQ and tet(W/N/W), and an increase in Mef(En2) compared to CON, highlighting the impact of dietary protein on the distribution of antibiotic-resistant bacteria. Overall, comprehensive metagenomic analysis reveals the dynamic adaptability of the microbiome in response to dietary shifts, indicating its capacity to modulate carbohydrate metabolism and ARGs in response to protein availability.

7.
Cancer Lett ; 598: 217112, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986734

ABSTRACT

Although anti-HER2 therapy has made significant strides in reducing metastasis and relapse in HER2-positive breast cancer, resistance to agents like trastuzumab, pertuzumab, and lapatinib frequently develops in patients undergoing treatment. Previous studies suggest that the hyperactivation of the PI3K-AKT signaling pathway by PIK3CA/PTEN gene mutations is implicated in HER2 resistance. In this study, we introduce a novel PI3K-p110α Proteolysis TAargeting Chimera (PROTAC) that effectively inhibits the proliferation of breast cancer cells by degrading PI3K-p110α. When tested in two lapatinib-resistant cell lines, JIMT1 and MDA-MB-453, both of which harbor PIK3CA mutations, the PI3K PROTAC notably reduced cell proliferation and induced G1 phase cell cycle arrest. Importantly, even at very low concentrations, PI3K PROTAC restored sensitivity to lapatinib. Furthermore, the efficacy of PI3K PROTAC surpassed that of Alpelisib, a selective PI3K-p110α kinase inhibitor in clinic. The superior performance of PI3K PROTAC was also confirmed in lapatinib-resistant breast cancer xenograft tumors and patient-derived breast cancer organoids (PDOs). In conclusion, this study reveals that the novel PI3K PROTAC we synthesized could serve as an effective agent to overcome lapatinib resistance.

8.
Chem Asian J ; : e202400611, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995858

ABSTRACT

Lignin-based carbon nanomaterials offer several advantages, including biodegradability, biocompatibility, high specific surface area, ease of functionalization, low toxicity, and cost-effectiveness. These materials show promise in biochemical sensing applications, particularly in the detection of metal ions, organic compounds, and human biosignals. Various methods can be employed to synthesize carbon nanomaterials with different dimensions ranging from 0D to 3D, resulting in diverse structures and physicochemical properties. This study provides an overview of the preparation techniques and characteristics of multidimensional (0-3D) lignin-based carbon nanomaterials, such as carbon dots (CDs), carbon nanotubes (CNTs), graphene, and carbon aerogels (CAs). Additionally, the sensing capabilities of these materials are compared and summarized, followed by a discussion on the potential challenges and future prospects in sensor development.

9.
mLife ; 3(2): 291-306, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948140

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a current global public health problem due to its increasing resistance to the most recent antibiotic therapies. One critical approach is to develop ways to revitalize existing antibiotics. Here, we show that the phytogenic compound cinnamaldehyde (CIN) and ß-lactam antibiotic combinations can functionally synergize and resensitize clinical MRSA isolates to ß-lactam therapy and inhibit MRSA biofilm formation. Mechanistic studies indicated that the CIN potentiation effect on ß-lactams was primarily the result of inhibition of the mecA expression by targeting the staphylococcal accessory regulator sarA. CIN alone or in combination with ß-lactams decreased sarA gene expression and increased SarA protein phosphorylation that impaired SarA binding to the mecA promoter element and downregulated virulence genes such as those encoding biofilm, α-hemolysin, and adhesin. Perturbation of SarA-mecA binding thus interfered with PBP2a biosynthesis and this decreased MRSA resistance to ß-lactams. Furthermore, CIN fully restored the anti-MRSA activities of ß-lactam antibiotics in vivo in murine models of bacteremia and biofilm infections. Together, our results indicated that CIN acts as a ß-lactam adjuvant and can be applied as an alternative therapy to combat multidrug-resistant MRSA infections.

10.
J Mater Chem B ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963283

ABSTRACT

A hydrogel is an ideal matrix material for flexible electronic devices, electronic skin and health detection devices due to its outstanding flexibility and stretchability. However, hydrogel-based flexible electronic devices swell once they are placed in a high humidity or underwater environment. The swelling behavior could damage the internal structure of hydrogels, ultimately leading to the reduction or complete loss of mechanical properties, electrical conductivity and sensing function. In order to resolve the above problems, a double network ionogel with remarkable anti-swelling behavior, stretchability and conductive properties was prepared. The ionogel consisted of gelatin (G) and copolymerization of acrylic acid (AA), 2-hydroxyethyl methacrylate (HEMA), butyl acrylate (BA), dimethylaminoethyl methacrylate maleate (D) and N,N'-methylene-bis-acrylamide (MBAA). Due to the dense crosslinking network and hydrophobic interaction, the ionogel exhibited remarkable anti-swelling properties (7.64% of the 30-day equilibrium swelling ratio in deionized water). D and MBAA were simultaneously introduced into the ionogel system as cross-linking agents to provide a large number of cross-linking points, improving the cross-linking density of the ionogel. Importantly, the introduction of D avoided ionic leakage by free radical copolymerization. Furthermore, the ionogel maintained stable mechanical properties and conductivity after being submerged in deionized water owing to remarkable anti-swelling performance. The mechanical properties of the ionogel retained 89.75% of the initial mechanical properties after a 5-day immersion in deionized water. Therefore, this ionogel could be employed as an underwater flexible wearable sensor for high humidity or underwater motion monitoring.

12.
J Hazard Mater ; 476: 135109, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972204

ABSTRACT

To overcome challenges in assessing the impact of environmental factors on heavy metal accumulation in soil due to limited comprehensive data, our study in Yangxin County, Hubei Province, China, analyzed 577 soil samples in combination with extensive big data. We used machine learning techniques, the potential ecological risk index, and the bivariate local Moran's index (BLMI) to predict Cr, Pb, Cd, As, and Hg concentrations in cultivated soil to assess ecological risks and identify pollution sources. The random forest model was selected for its superior performance among various machine learning models, and results indicated that heavy metal accumulation was substantially influenced by environmental factors such as climate, elevation, industrial activities, soil properties, railways, and population. Our ecological risk assessment highlighted areas of concern, where Cd and Hg were identified as the primary threats. BLMI was used to analyze spatial clustering and autocorrelation patterns between ecological risk and environmental factors, pinpointing areas that require targeted interventions. Additionally, redundancy analysis revealed the dynamics of heavy metal transfer to crops. This detailed approach mapped the spatial distribution of heavy metals, highlighted the ecological risks, identified their sources, and provided essential data for effective land management and pollution mitigation.

13.
J Pineal Res ; 76(5): e12987, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38975671

ABSTRACT

Sleep deprivation (SD) has been associated with a plethora of severe pathophysiological syndromes, including gut damage, which recently has been elucidated as an outcome of the accumulation of reactive oxygen species (ROS). However, the spatiotemporal analysis conducted in this study has intriguingly shown that specific events cause harmful damage to the gut, particularly to goblet cells, before the accumulation of lethal ROS. Transcriptomic and metabolomic analyses have identified significant enrichment of metabolites related to ferroptosis in mice suffering from SD. Further analysis revealed that melatonin could rescue the ferroptotic damage in mice by suppressing lipid peroxidation associated with ALOX15 signaling. ALOX15 knockout protected the mice from the serious damage caused by SD-associated ferroptosis. These findings suggest that melatonin and ferroptosis could be targets to prevent devastating gut damage in animals exposed to SD. To sum up, this study is the first report that proposes a noncanonical modulation in SD-induced gut damage via ferroptosis with a clearly elucidated mechanism and highlights the active role of melatonin as a potential target to maximally sustain the state during SD.


Subject(s)
Ferroptosis , Melatonin , Mice, Knockout , Sleep Deprivation , Animals , Mice , Melatonin/metabolism , Melatonin/pharmacology , Sleep Deprivation/metabolism , Male , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Lipid Peroxidation , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase
14.
BMC Neurol ; 24(1): 244, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009963

ABSTRACT

BACKGROUND: Elevated blood glucose (BG) variability has been reported as an independent risk factor for poor prognosis in a variety of diseases. This study aimed to investigate the association between BG variability and clinical outcomes in patients with spontaneous cerebellar hemorrhage (SCH) undergoing surgical operation. METHODS: This retrospective cohort study of the consecutive patients admitted to the department of Neurosurgery, the Affiliated Hospital of Qingdao University between January 2014 and June 2022 with the diagnosis of SCH underwent surgical intervention. BG analysis was continuously and routinely performed. BG variability was represented by the standard deviation (SD) of the serial measurements within the first 7 days. The general characteristics, imageological information, blood glucose level, and surgical information were reviewed and compared through medical records. RESULTS: A total of 115 patients (65 male and 50 female) were enrolled. Out of all 115 patients, the overall clinical outcomes according to the modified Rankin Scale (mRS) were poor (mRS 3-6) in 31 patients (26.96%) and good (mRS 0-2) in 84 patients (73.04%). Twelve of the 115 patients died during hospitalization, and the mortality rate was 10.43%. Multivariate logistic regression analysis showed that SD of BG (odds ratio (OR), 4.717; 95% confidence interval (CI), 1.054-21.115; P = 0.043), GCS (OR, 0.563; 95% CI, 0.330-0.958; P = 0.034), and hematoma volume (OR, 1.395; 95% CI, 1.118-1.748; P = 0.003) were significant predictors. The area under the ROC curve of SD of BG was 0.911 (95% CI, 0.850-0.973; P < 0.001) with a sensitivity and specificity of 90.3% and 83.3%, respectively, and the cut-off value was 1.736. CONCLUSIONS: High BG Variability is independently correlated with the 6-month poor outcomes in patients with SCH undergoing surgical operation.


Subject(s)
Blood Glucose , Humans , Male , Female , Retrospective Studies , Middle Aged , Blood Glucose/analysis , Aged , Cerebellar Diseases/surgery , Cerebellar Diseases/blood , Cerebellar Diseases/diagnosis , Cerebellar Diseases/mortality , Adult , Treatment Outcome , Prognosis , Intracranial Hemorrhages/blood , Intracranial Hemorrhages/surgery , Intracranial Hemorrhages/diagnosis , Intracranial Hemorrhages/mortality
15.
Langmuir ; 40(28): 14583-14593, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38967629

ABSTRACT

Enhancing the selectivity of detection methods is essential to distinguish breast cancer biomarker cluster of differentiation 44 (CD44) from other species and reduce false-positive or false-negative results. Here, oxygen vacancy-enriched CoFe2O4 (CoFe2O4-x) was crafted, and its implementation as an electrochemical electrode for the detection of CD44 biomarkers has been scrutinized. This unique electrode material offers significant benefits and novel features that enhance the sensitivity and selectivity of the detection process. The oxygen vacancy density of CoFe2O4-x was tuned by adjusting the mass ratios of iron to cobalt precursors (iron-cobalt ratio) and changing annealing atmospheres. Electrochemical characterization reveals that, when the iron-cobalt ratio is 1:0.54 and the annealing atmosphere is nitrogen, the as-synthesized CoFe2O4-x electrode manifests the best electrochemical activity. The CoFe2O4-x electrode demonstrates high sensitivity (28.22 µA (ng mL)-1 cm-2), low detection limit (0.033 pg mL-1), and robust stability (for 11 days). Oxygen vacancies can not only enhance the conductivities of CoFe2O4 but also provide better adsorption of -NH2, which is beneficial for stability and electrochemical detection performance. The electrochemical detection signal can be amplified using CoFe2O4-x as a signal probe. Additionally, it is promising to know that the CoFe2O4-x electrode has shown good accuracy in real biological samples, including melanoma cell dilutions and breast cancer patient sera. The electrochemical detection results are comparable to ELISA results, which indicates that the CoFe2O4-x electrode can detect CD44 in complex biological samples. The utilization of CoFe2O4-x as the signal probe may expand the application of CoFe2O4-x in biosensing fields.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Cobalt , Electrochemical Techniques , Electrodes , Ferric Compounds , Hyaluronan Receptors , Cobalt/chemistry , Humans , Breast Neoplasms/blood , Hyaluronan Receptors/analysis , Hyaluronan Receptors/chemistry , Electrochemical Techniques/methods , Biomarkers, Tumor/blood , Biomarkers, Tumor/analysis , Ferric Compounds/chemistry , Oxygen/chemistry , Female , Limit of Detection
16.
Heliyon ; 10(12): e32516, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994101

ABSTRACT

Background: Many patients with atrial fibrillation (AF) discontinued oral anticoagulation (OAC) therapy after successful catheter ablation. We aimed to determine the real-world risks and consequences of discontinuing OAC use after catheter ablation for AF. Methods: Patients who underwent successful catheter ablation for AF from January 2004 to December 2020 were divided into continued long-term OAC (On-OAC, n = 1062) and discontinued (Off-OAC, n = 1055) groups. The long-term outcomes including thromboembolic events, major bleeding, all-cause mortality and major adverse cardiovascular events (MACE), were compared between the two groups. Results: The CHA2DS2-VASc score was 3.44 ± 1.12. After a mean follow-up of 37.09 months, thromboembolism risk was higher and major bleeding risk was lower in the Off-OAC than in the On-OAC group (Both log-rank P < 0.001). CHA2DS2-VASc score-stratified subgroup analysis showed similar cumulative event rates between the two groups in men and women with scores of 2 and 3 (intermediate risk for stroke), respectively, (P > 0.05), except for a higher major bleeding rate in the On-OAC group (P = 0.002). Patients at high risk for stroke (men and women with scores ≥3 and ≥ 4) had better non-thromboembolic and non-MACE results (Both log-rank P < 0.05). Conclusion: Men with a CHA2DS2-VASc score of 2 and women with a score of 3 had a relatively low incidence of stroke events after successful catheter ablation for AF and may be safe for anticoagulation cessation. Greater benefits from long-term OAC were observed in men with CHA2DS2-VASc score ≥3 and women with score ≥4.

17.
World J Clin Cases ; 12(19): 4016-4021, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38994297

ABSTRACT

BACKGROUND: Venous air embolism (VAE) is a potentially lethal condition, with a reported incidence rate of about 0.13%, and the true incidence may be higher since many VAE are asymptomatic. The current treatments for VAE include Durant's maneuver, aspiration and removal of air through venous catheters, and hyperbaric oxygen therapy. For critically ill patients, use of cardiotonic drugs and chest compressions remain useful strategies. The wider availability of extracorporeal membrane oxygenation (ECMO) has brought a new option for VAE patients. CASE SUMMARY: A 53-year-old female patient with VAE presented to the emergency clinic due to abdominal pain with fever for 1 d and unconsciousness for 2 h. One day ago, the patient suffered from abdominal pain, fever, and diarrhea. She suddenly became unconscious after going to the toilet during the intravenous infusion of ciprofloxacin 2 h ago, accompanied by nausea and vomiting, during which a small amount of gastric contents were discharged. She was immediately sent to a local hospital, where cranial and chest computed tomography showed bilateral pneumonia as well as accumulated air visible in the right ventricle and pulmonary artery. The condition deteriorated despite endotracheal intubation, rehydration, and other treatments, and the patient was then transferred to our hospital. Veno-arterial ECMO was applied in our hospital, and the patient's condition gradually improved. The patient was successfully weaned from ECMO and extubated after two days. CONCLUSION: ECMO may be an important treatment for patients with VAE in critical condition.

18.
PLoS One ; 19(7): e0306764, 2024.
Article in English | MEDLINE | ID: mdl-38995875

ABSTRACT

As the world steadily recovers from the COVID-19 pandemic, managing large gatherings becomes a critical concern for ensuring crowd safety. The crowd-crush disaster in Seoul in 2022 highlights the need for effective predictive crowd management techniques. In this study, an empirical analysis of this incident is conducted using data from various sources, and model-based simulations are created to replicate hazardous crowd conditions in high-risk areas. In the empirical analysis, mobile device data indicates a significant increase in population above normal levels in the disaster area just hours before the incident occurred. In the simulations, a hydrodynamic model is employed to simulate a bidirectional collision, which quantitatively demonstrates that the average density during the crush reached 7.57 ped/m2 (with a maximum of (9.95)ped/m2). Additionally, the average crowd pressure peaked at 1,063 N/m (with a maximum of 1,961 N/m), and the maximum velocity entropy was 10.99. Based on these findings, it can be concluded that the primary causes of the disaster were the substantial population, bidirectional collision, and escalating panic. The results of controlled simulations under various management strategies are then presented. By implementing effective crowd management techniques, crowd safety can be enhanced through quantitative comparisons of these key indicators.


Subject(s)
COVID-19 , Crowding , Humans , COVID-19/epidemiology , Seoul , Disasters , SARS-CoV-2/isolation & purification , Pandemics , Mass Gatherings , Models, Theoretical , Computer Simulation
19.
J Orthop Surg Res ; 19(1): 394, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978119

ABSTRACT

INTRODUCTION: Fu's subcutaneous needling (FSN) is a new type of acupuncture that uses subcutaneous tissue to oscillate from side to side to improve muscle pathology status and can be effective in treating Knee osteoarthritis. Nonetheless, whether the clinical effect is similar to that of most commonly used drugs is unclear. Thus, this study aims to determine the pain-relieving effect and improvement in the joint function of the FSN therapy by comparing it with that of a positive control drug (celecoxib). Furthermore, this clinical trial also aims to evaluate the effect of FSN on gait and lower limb muscle flexibility, which can further explore the scientific mechanisms of the FSN therapy. METHODS AND ANALYSIS: This study is a randomized, parallel-controlled, single-center prospective clinical study that includes 60 participants, with an FSN group (n = 30) and a drug group (n = 30). The Fu's subcutaneous needling (FSN) group undergo the FSN therapy 3 times a week for 2 weeks, while the drug group receives 0.2 g/day oral celecoxib for 2 weeks, with a follow-up period of 4 weeks after the completion of treatment. The primary outcome is the difference in the visual analog scale score after 2 weeks of treatment compared with baseline. The Western Ontario and McMaster Universities (WOMAC) Osteoarthritis Index, joint active range of motion test, three-dimensional gait analysis, and shear wave elastic imaging technology analysis in lower limb muscles are also performed to demonstrate clinical efficacy. ETHICS AND DISSEMINATION: The trial is performed following the Declaration of Helsinki. The study protocol and consent form have been approved by the Ethics Committee of Guangdong Provincial Hospital of Chinese Medicine. All patients will give informed consent before participation and the trial is initiated after approval. The results of this trial will be disseminated through publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT06328153.


Subject(s)
Acupuncture Therapy , Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/therapy , Acupuncture Therapy/methods , Prospective Studies , Female , Male , Aged , Treatment Outcome , Biomechanical Phenomena , Middle Aged , Celecoxib/administration & dosage , Range of Motion, Articular , Randomized Controlled Trials as Topic , Gait
20.
J Obstet Gynaecol ; 44(1): 2361435, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39007780

ABSTRACT

BACKGROUND: Prognostic factors-based nomograms have been utilised to detect the likelihood of the specific cancer events. We have focused on the roles of aldehyde dehydrogenase 1 (ALDH1) and p-AKT in predicting the prognosis of BC patients. This study was designed to establish nomograms based on the integration of aldehyde dehydrogenase 1 (ALDH1) and p-AKT in predicting the disease-free survival (DFS) and overall survival (OS) of breast cancer (BC) patients. METHODS: Demographic and clinical data were obtained from BC patients admitted to our hospital between September 2015 and August 2016. Univariate and multivariate Cox regression analyses were utilised to analyse the risk factors of recurrence and mortality. The nomograms for predicting the DFS and OS were established using the screened risk factors. Stratified analysis was performed with the cut-off value of exp (pi) of 4.0-fold in DFS and OS, respectively. RESULTS: Multivariate Cox regression analysis indicated that ALDH, p-AKT and pathological stage III were independent risk factors for the recurrence among BC patients. ALDH1, p-AKT, pathological stage III and ER-/PR-/HER2- were independent risk factors for the mortality among BC patients. The established nomograms based on these factors were effective for predicting the DFS and OS with good agreement to the calibration curve and acceptable area under the receiver operating characteristic (ROC) curve. Finally, stratified analyses showed patients with a low pi showed significant decrease in the DFS and OS compared with those of high risk. CONCLUSION: We established nomograms for predicting the DFS and OS of BC patients based on ALDH1, p-AKT and pathological stages. The ER-/PR-/HER2- may be utilised to predict the OS rather than DFS in the BC patients.


Many breast cancer patients show poor response after treatment due to recurrence and metastasis. Therefore, early prediction of the disease-free survival and overall survival is crucial to the treatment outcome and clinical decision-making. In this study, we established nomograms with the demographic and clinical data from breast cancer patients admitted to our hospital between September 2015 and August 2016. Univariate and multivariate Cox regression analyses showed that some important proteins and signalling pathways were risk factors for decreased disease-free survival and overall survival of breast cancer patients. On this basis, we established an effective nomogram for predicting the disease-free survival and overall survival of these patients based on these factors. This study offers new options in the predicting the treatment outcome of breast cancer patients.


Subject(s)
Breast Neoplasms , Nomograms , Humans , Female , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Middle Aged , Disease-Free Survival , Adult , Risk Factors , Aldehyde Dehydrogenase 1 Family/metabolism , Neoplasm Recurrence, Local , Aged , Neoplasm Staging , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Retrospective Studies , Proportional Hazards Models , Biomarkers, Tumor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...