Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters











Publication year range
1.
Cell Mol Life Sci ; 81(1): 422, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367979

ABSTRACT

Zinc (Zn) transporters contribute to the maintenance of intracellular Zn homeostasis in vertebrate, whose activity and function are modulated by post-translational modification. However, the function of small ubiquitin-like modifier (SUMOylation) in Zn metabolism remains elusive. Here, compared with low Zn group, a high-Zn diet significantly increases hepatic Zn content and upregulates the expression of metal-response element-binding transcription factor-1 (MTF-1), Zn transporter 6 (ZnT6) and deSUMOylation enzymes (SENP1, SENP2, and SENP6), but inhibits the expression of SUMO proteins and the E1, E2, and E3 enzymes. Mechanistically, Zn triggers the activation of the MTF-1/SENP1 pathway, resulting in the reduction of ZnT6 SUMOylation at Lys 409 by small ubiquitin-like modifier 1 (SUMO1), and promoting the deSUMOylation process mediated by SENP1. SUMOylation modification of ZnT6 has no influence on its localization but reduces its protein stability. Importantly, deSUMOylation of ZnT6 is crucial for controlling Zn export from the cytosols into the Golgi apparatus. In conclusion, for the first time, we elucidate a novel mechanism by which SUMO1-catalyzed SUMOylation and SENP1-mediated deSUMOylation of ZnT6 orchestrate the regulation of Zn metabolism within the Golgi apparatus.


Subject(s)
Cation Transport Proteins , Cysteine Endopeptidases , Golgi Apparatus , Sumoylation , Zinc , Animals , Humans , Male , Mice , Carrier Proteins , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Golgi Apparatus/metabolism , Liver/metabolism , Mice, Inbred C57BL , Protein Processing, Post-Translational , SUMO-1 Protein/metabolism , Transcription Factor MTF-1 , Transcription Factors/metabolism , Transcription Factors/genetics , Zinc/metabolism
2.
Animals (Basel) ; 14(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39272308

ABSTRACT

This experiment aimed to evaluate the effects of using sugarcane bagasse (SB) as a substitute for soybean hulls and wheat bran in the diet of pregnant sows on their reproductive performance and gut microbiota. A total of seventy-two primiparous sows were randomly divided into four treatment groups, with eighteen replicates of one sow each. The sows were fed a basal diet supplemented with 0% (CON), 5%, 10%, and 15% SB to replace soybean hulls from day 57 of gestation until the day of the end of the gestation period. The results showed that SB contains higher levels of crude fiber (42.1%) and neutral detergent fiber (81.3%) than soybean hulls, and it also exhibited the highest volumetric expansion when soaked in water (50 g expanding to 389.8 mL) compared to the other six materials we tested (vegetable scraps, soybean hulls, wheat bran, rice bran meal, rice bran, and corn DDGS). Compared with the CON, 5% SB significantly increased the litter birth weight of piglets. Meanwhile, 10% and 15% SB significantly increased the rates of constipation and reduced the contents of isobutyric acid and isovaleric acid in feces. Furthermore, 10% and 15% SB significantly disturbed gut microbial diversity with increasing Streptococcus and decreasing Prevotellaceae_NK3B31-group and Christensenellaceae_R-7-group genera in feces. Interestingly, Streptococcus had a significant negative correlation with isobutyric acid, isovaleric acid, and fecal score, while Prevotellaceae_NK3B31-group and Christensenellaceae_R-7-group had a positive correlation with them. In conclusion, our study indicates that 5% SB can be used as an equivalent substitute for soybean hulls to improve the reproductive performance of sows without affecting their gut microbiota.

3.
Sci Adv ; 10(38): eadj4122, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39303039

ABSTRACT

Sarcopenia is characterized by accelerated muscle mass and function loss, which burdens and challenges public health worldwide. Several studies indicated that selenium deficiency is associated with sarcopenia; however, the specific mechanism remains unclear. Here, we demonstrated that selenoprotein W (SELENOW) containing selenium in the form of selenocysteine functioned in sarcopenia. SELENOW expression is up-regulated in dexamethasone (DEX)-induced muscle atrophy and age-related sarcopenia mouse models. Knockout (KO) of SELENOW profoundly aggravated the process of muscle mass loss in the two mouse models. Mechanistically, SELENOW KO suppressed the RAC1-mTOR cascade by the interaction between SELENOW and RAC1 and induced the imbalance of protein synthesis and degradation. Consistently, overexpression of SELENOW in vivo and in vitro alleviated the muscle and myotube atrophy induced by DEX. SELENOW played a role in age-related sarcopenia and regulated the genes associated with aging. Together, our study uncovered the function of SELENOW in age-related sarcopenia and provides promising evidence for the prevention and treatment of sarcopenia.


Subject(s)
Mice, Knockout , Proteasome Endopeptidase Complex , Protein Biosynthesis , Sarcopenia , Selenoprotein W , Ubiquitin , Animals , Proteasome Endopeptidase Complex/metabolism , Mice , Sarcopenia/metabolism , Sarcopenia/genetics , Sarcopenia/pathology , Ubiquitin/metabolism , Selenoprotein W/genetics , Selenoprotein W/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Dexamethasone/pharmacology , TOR Serine-Threonine Kinases/metabolism , Disease Models, Animal , Muscular Atrophy/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Muscular Atrophy/chemically induced , Aging/metabolism , Male , Signal Transduction , Neuropeptides
4.
Nutrients ; 16(18)2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39339808

ABSTRACT

BACKGROUND/OBJECTIVES: As a hyperaccumulator of selenium (Se), Cardamine violifolia (Cv) and its peptide extract could ameliorate the negative effects of a high-fat diet (HFD). However, the effects of the coaccumulation of cadmium (Cd) in Se-enriched Cv (Cv2) and the potential confounding effect on the roles of enriched Se remain unknown. We aimed to investigate whether Cv2 could alleviate HFD-induced lipid disorder and liver damage. METHODS: Three groups of 31-week-old female mice were fed for 41 weeks (n = 10-12) with a control Cv-supplemented diet (Cv1D, 0.15 mg Se/kg, 30 µg Cd/kg, and 10% fat calories), a control Cv-supplemented HFD (Cv1HFD, 45% fat calories), and a Cv2-supplemented HFD (Cv2HFD, 1.5 mg Se/kg, 0.29 mg Cd/kg, and 45% fat calories). Liver and serum were collected to determine the element concentrations, markers of liver injury and lipid disorder, and mRNA and/or protein expression of lipid metabolism factors, heavy metal detoxification factors, and selenoproteins. RESULTS: Both Cv1HFD and Cv2HFD induced obesity, and Cv2HFD downregulated Selenoi and upregulated Dio3 compared with Cv1D. When comparing Cv2HFD against Cv1HFD, Cv2 increased the liver Se and Cd, the protein abundance of Selenoh, and the mRNA abundance of 10 selenoproteins; reduced the serum TG, TC, and AST; reduced the liver TG, lipid droplets, malondialdehyde, and mRNA abundance of Mtf1 and Mt2; and differentially regulated the mRNA levels of lipid metabolism factors. CONCLUSIONS: Cv2 alleviated HFD-induced lipid dysregulation and liver damage, which was probably associated with its unique Se speciation. However, further research is needed to explore the interaction of plant-coenriched Se and Cd and its effects on health.


Subject(s)
Cadmium , Diet, High-Fat , Liver , Obesity , Selenium , Animals , Diet, High-Fat/adverse effects , Selenium/pharmacology , Female , Mice , Obesity/metabolism , Liver/metabolism , Liver/drug effects , Mice, Obese , Lipid Metabolism/drug effects , Mice, Inbred C57BL , Dietary Supplements , Lipid Metabolism Disorders/drug therapy , Selenoproteins/metabolism
5.
Biol Trace Elem Res ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292416

ABSTRACT

This study aims to investigate the effect of different levels of zinc oxide quantum dots (ZnO-QDs) on the growth performance and gut health in broilers. A total of 1125 1-day-old Ross 308 broilers were randomly divided into five groups with 15 replicates of 15 chicks each. The broilers were fed basal diets supplemented with 0, 40, 80, 120, or 160 mg Zn/kg as ZnO-QDs for 6 weeks. The results showed that dietary 80 and 120 mg Zn/kg ZnO-QD supplementation increased (P < 0.05) average daily gain (1.4-1.7%) and reduced feed conversion ratio (1.3%) compared to the basal diet group during various experimental periods. Meanwhile, 80 mg Zn/kg ZnO-QD supplementation increased (P < 0.05) trypsin activity (25.4%), villus height, and the ratio of villus height to crypt depth in the jejunum. Moreover, 80 mg Zn/kg ZnO-QD supplementation increased (P < 0.05) the activities of glutathione reductase (47.7%) and superoxide dismutase (30.9%), while 120 mg Zn/kg ZnO-QD supplementation decreased (P < 0.05) glutathione peroxidase activity (27.1%) in the jejunum. Furthermore, 40 mg Zn/kg ZnO-QD supplementation down-regulated (P < 0.05) the expression of genes; interleukin-2, transforming growth factor ß (TGF-ß), Cathelicidin-1, Cathelicidin-2, Cathelicidin-3, and Occludin, while 80-160 mg Zn/kg ZnO-QD supplementation up-regulated (P < 0.05) Claudin-2 expression in the jejunum. In conclusion, dietary ZnO-QD supplementation improved growth performance of broilers potentially by enhancing their intestinal health status. Based on nonlinear regression analysis, the appropriate level of ZnO-QD supplementation would be from 98.2 to 102.5 mg Zn/kg.

6.
Biol Trace Elem Res ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980512

ABSTRACT

The objective of the study was to evaluate the effects of trace mineral supplementation in sows during gestation and lactation on the performance and health status of sows and their offspring. Sows (n = 30; Landrace × Yorkshire; avg parity = 3.9) were randomly allocated into two dietary treatments. Sows received a basal diet supplemented with 12 mg/kg Cu, 30 mg/kg Fe, 90 mg/kg Zn, 70 mg/kg Mn, 0.30 mg/kg Se, and 1.5 mg/kg I from an inorganic trace mineral source (ITM) or a blend of hydroxychloride and organic trace mineral source (HOTM) from day 1 of gestation until the end of the lactation period at day 21. Compared to the ITM, the HOTM supplementation increased (P < 0.05) both litter birth weight and individual piglet birth weight. Although not statistically significant, HOTM tended to increase (P = 0.069) the level of lactose in colostrum. HOTM increased (P < 0.05) the concentration of Mn and Se in the colostrum, milk, and serum of sows and/or piglets. Notably, the Zn concentration in the serum of sows was higher in sows supplemented with ITM compared to HOTM. Moreover, HOTM increased (P < 0.05) the activities of GPX and SOD in gestating sows and piglets, as well as increased (P < 0.05) cytokines (IL-1ß, TNF-α, and IL-10) in the serum of sows. The immunoglobulins (IgA, IgG, and IgM) also increased in sows and/or piglets at certain experimental time points. In conclusion, HOTM supplementation positively affected piglet development and improved the health status of sows and piglets potentially by regulating redox homeostasis and immunity.

7.
Adv Sci (Weinh) ; 11(28): e2400527, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38689508

ABSTRACT

Cisplatin-associated acute kidney injury (AKI) is a severe clinical syndrome that significantly restricts the chemotherapeutic application of cisplatin in cancer patients. Ferroptosis, a newly characterized programmed cell death driven by the lethal accumulation of lipid peroxidation, is widely reported to be involved in the pathogenesis of cisplatin-associated AKI. Targeted inhibition of ferroptosis holds great promise for developing novel therapeutics to alleviate AKI. Unfortunately, current ferroptosis inhibitors possess low bioavailability or perform non-specific accumulation in the body, making them inefficient in alleviating cisplatin-associated AKI or inadvertently reducing the anti-tumor efficacy of cisplatin, thus not suitable for clinical application. In this study, a novel selenium nanomaterial, polyacrylic acid-coated selenium-doped carbon dots (SeCD), is rationally developed. SeCD exhibits high biocompatibility and specifically accumulates in the kidney. Administration of SeCD effectively scavenges broad-spectrum reactive oxygen species and significantly facilitates GPX4 expression by releasing selenium, resulting in strong mitigation of ferroptosis in renal tubular epithelial cells and substantial alleviation of cisplatin-associated AKI, without compromising the chemotherapeutic efficacy of cisplatin. This study highlights a novel and promising therapeutic approach for the clinical prevention of AKI in cancer patients undergoing cisplatin chemotherapy.


Subject(s)
Acrylic Resins , Acute Kidney Injury , Carbon , Cisplatin , Ferroptosis , Selenium , Ferroptosis/drug effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Selenium/pharmacology , Selenium/chemistry , Animals , Carbon/chemistry , Mice , Acrylic Resins/chemistry , Antineoplastic Agents , Disease Models, Animal , Humans , Quantum Dots , Male
8.
Sci China Life Sci ; 67(7): 1468-1478, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703348

ABSTRACT

Dietary exposure to aflatoxin B1 (AFB1) is harmful to the health and performance of domestic animals. The hepatic cytochrome P450s (CYPs), CYP1A1 and CYP2A6, are the primary enzymes responsible for the bioactivation of AFB1 to the highly toxic exo-AFB1-8,9-epoxide (AFBO) in chicks. However, the transcriptional regulation mechanism of these CYP genes in the liver of chicks in AFB1 metabolism remains unknown. Dual-luciferase reporter assay, bioinformatics and site-directed mutation results indicated that specificity protein 1 (SP1) and activator protein-1 (AP-1) motifs were located in the core region -1,063/-948, -606/-541 of the CYP1A1 promoter as well as -636/-595, -503/-462, -147/-1 of the CYP2A6 promoter. Furthermore, overexpression and decoy oligodeoxynucleotide technologies demonstrated that SP1 and AP-1 were pivotal transcriptional activators regulating the promoter activity of CYP1A1 and CYP2A6. Moreover, bioactivation of AFB1 to AFBO could be increased by upregulation of CYP1A1 and CYP2A6 expression, which was trans-activated owing to the upregulalion of AP-1, rather than SP1, stimulated by AFB1-induced reactive oxygen species. Additionally, nano-selenium could reduce ROS, downregulate AP-1 expression and then decrease the expression of CYP1A1 and CYP2A6, thus alleviating the toxicity of AFB1. In conclusion, AP-1 and SP1 played important roles in the transactivation of CYP1A1 and CYP2A6 expression and further bioactivated AFB1 to AFBO in chicken liver, which could provide novel targets for the remediation of aflatoxicosis in chicks.


Subject(s)
Aflatoxin B1 , Chickens , Cytochrome P-450 CYP1A1 , Cytochrome P-450 CYP2A6 , Liver , Promoter Regions, Genetic , Sp1 Transcription Factor , Transcription Factor AP-1 , Animals , Aflatoxin B1/metabolism , Chickens/metabolism , Liver/metabolism , Sp1 Transcription Factor/metabolism , Sp1 Transcription Factor/genetics , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Transcription Factor AP-1/metabolism , Transcription Factor AP-1/genetics , Cytochrome P-450 CYP2A6/metabolism , Cytochrome P-450 CYP2A6/genetics , Transcriptional Activation
9.
Animals (Basel) ; 14(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38473150

ABSTRACT

Four trials were conducted to establish a protein and amino acid requirement model for layer chicks over 0-6 weeks by using the analytical factorization method. In trial 1, a total of 90 one-day-old Jing Tint 6 chicks with similar body weight were selected to determine the growth curve, carcass and feather protein deposition, and amino acid patterns of carcass and feather proteins. In trials 2 and 3, 24 seven-day-old and 24 thirty-five-day-old Jing Tint 6 chicks were selected to determine the protein maintenance requirements, amino acid pattern, and net protein utilization rate. In trial 4, 24 ten-day-old and 24 thirty-eight-day-old Jing Tint 6 chicks were selected to determine the standard terminal ileal digestibility of amino acids. The chicks were fed either a corn-soybean basal diet, a low nitrogen diet, or a nitrogen-free diet throughout the different trials. The Gompertz equation showed that there is a functional relationship between body weight and age, described as BWt(g) = 2669.317 × exp(-4.337 × exp(-0.019t)). Integration of the test results gave a comprehensive dynamic model equation that could accurately calculate the weekly protein and amino acid requirements of the layer chicks. By applying the model, it was found that the protein requirements for Jing Tint 6 chicks during the 6-week period were 21.15, 20.54, 18.26, 18.77, 17.79, and 16.51, respectively. The model-predicted amino acid requirements for Jing Tint 6 chicks during the 6-week period were as follows: Aspartic acid (0.992-1.284), Threonine (0.601-0.750), Serine (0.984-1.542), Glutamic acid (1.661-1.925), Glycine (0.992-1.227), Alanine (0.909-0.961), Valine (0.773-1.121), Cystine (0.843-1.347), Methionine (0.210-0.267), Isoleucine (0.590-0.715), Leucine (0.977-1.208), Tyrosine (0.362-0.504), Phenylalanine (0.584-0.786), Histidine (0.169-0.250), Lysine (0.3999-0.500), Arginine (0.824-1.147), Proline (1.114-1.684), and Tryptophan (0.063-0.098). In conclusion, this study constructed a dynamic model for the protein and amino acid requirements of Jing Tint 6 chicks during the brooding period, providing an important insight to improve precise feeding for layer chicks through this dynamic model calculation.

10.
Anim Nutr ; 16: 251-266, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38362519

ABSTRACT

T-2 toxin is one of the most widespread and toxic fungal toxins in food and feed. It can cause gastrointestinal toxicity, hepatotoxicity, immunotoxicity, reproductive toxicity, neurotoxicity, and nephrotoxicity in humans and animals. T-2 toxin is physicochemically stable and does not readily degrade during food and feed processing. Therefore, suppressing T-2 toxin-induced organ toxicity through antidotes is an urgent issue. Protective agents against the organ toxicity of T-2 toxin have been recorded widely in the literature, but these protective agents and their molecular mechanisms of detoxification have not been comprehensively summarized. In this review, we provide an overview of the various protective agents to T-2 toxin and the molecular mechanisms underlying the detoxification effects. Targeting appropriate targets to antagonize T-2 toxin toxicity is also an important option. This review will provide essential guidance and strategies for the better application and development of T-2 toxin antidotes specific for organ toxicity in the future.

11.
J Nutr ; 154(2): 369-380, 2024 02.
Article in English | MEDLINE | ID: mdl-38122845

ABSTRACT

BACKGROUND: There is a U-shaped relationship between dietary selenium (Se) ingestion and optimal sperm quality. OBJECTIVES: This study aimed to investigate the optimal dietary dose and forms of Se for sperm quality of breeder roosters and the relevant mechanisms. METHODS: In experiment 1, 18-wk-old Jingbai laying breeder roosters were fed a Se-deficient base diet (BD, 0.06 mg Se/kg), or the BD + 0.1, 0.2, 0.3, 0.4, 0.5, or 1.0 mg Se/kg for 9 wk. In experiment 2, the roosters were fed the BD or the BD + sodium selenite (SeNa), seleno-yeast (SeY), or Se-nanoparticles (SeNPs) at 0.2 mg Se/kg for 9 wk. RESULTS: In experiment 1, added dietary 0.2 and 0.3 mg Se/kg led to higher sperm motility and lower sperm mortality than the other groups at weeks 5, 7, and/or 9. Furthermore, added dietary 0.2-0.4 mg Se/kg produced better testicular histology and/or lower testicular 8-hydroxy-deoxyguanosine than the other groups. Moreover, integrated testicular transcriptomic and cecal microbiomic analysis revealed that inflammation, cell proliferation, and apoptosis-related genes and bacteria were dysregulated by Se deficiency or excess. In experiment 2, compared with SeNa, SeNPs slightly increased sperm motility throughout the experiment, whereas SeNPs slightly reduced sperm mortality compared with SeY at week 9. Both SeY and SeNPs decreased malondialdehyde in the serum than those of SeNa, and SeNPs led to higher glutathione peroxidase (GPX) and thioredoxin reductase activities and GPX1 and B-cell lymphoma 2 protein concentrations in the testis compared with SeY and SeNa. CONCLUSIONS: The optimal dietary Se dose for reproductive health of breeder roosters is 0.25-0.35 mg Se/kg, and SeNPs displayed better effects on reproductive health than SeNa and SeY in laying breeder roosters. The optimal doses and forms of Se maintain reproductive health of roosters associated with regulation intestinal microbiota homeostasis and/or testicular redox balance, inflammation, cell proliferation, and apoptosis.


Subject(s)
Gastrointestinal Microbiome , Selenium , Male , Animals , Testis/metabolism , Selenium/metabolism , Chickens/metabolism , Reproductive Health , Sperm Motility , Seeds , Oxidation-Reduction , Diet , Inflammation/metabolism , Apoptosis , Cell Proliferation , Dietary Supplements
12.
Food Chem Toxicol ; 182: 114159, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913901

ABSTRACT

This study was to evaluate the efficacy of an integrated mycotoxin-mitigating agent in reducing the adverse effects of co-occurring dietary aflatoxin B1 deoxynivalenol and ochratoxin A on broiler breeder hens. 360 30-week-old Hubbard Efficiency Plus broiler breeder hens were allocated into four groups and received a basal diet (BD; Control), BD added 0.15 mg/kg aflatoxin B1+1.5 mg/kg deoxynivalenol+0.12 mg/kg ochratoxin A (Toxins), BD plus Toxins with 0.1% TOXO-XL (Toxins + XL1), and BD plus Toxins with 0.2% TOXO-XL (Toxins + XL2), respectively, for 8 weeks, and then received the same BD for another 4 weeks. Compared with control, mycotoxins decreased total egg weigh, egg laying rate, settable eggs rate, hatch of total eggs rate, egg quality, but increased feed/egg ratio and mortality rate, and impaired the liver and oviduct health during weeks 1-8 and(or) 9-12. It also increased PC and MDA concentrations, TUNEL-positive cells and IL-1ß and IL-6 expression, and decreased T-AOC, GPX and CAT activities in liver and/or oviduct. Notably, most of these negative changes were mitigated by both dosages of TOXO-XL. Generally, 0.2% TOXO-XL displayed better mitigation effects than 0.1% TOXO-XL. Conclusively, these findings revealed that TOXO-XL could mitigate the combined mycotoxins-induced toxicity on the performance, liver and oviduct health, through the regulation of redox, immunity, and apoptosis in broiler breeder hens.


Subject(s)
Mycotoxins , Humans , Animals , Female , Mycotoxins/toxicity , Mycotoxins/metabolism , Chickens/metabolism , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , Diet , Liver/metabolism , Oviducts/metabolism , Animal Feed/analysis
13.
J Nutr ; 153(12): 3373-3381, 2023 12.
Article in English | MEDLINE | ID: mdl-37923224

ABSTRACT

BACKGROUND: Heat stress (HS) has a harmful impact on the male reproductive system, primarily by reducing the sperm quality. The testicular microenvironment plays an important role in sperm quality. OBJECTIVES: This study aimed to explore the underlying mechanism by which HS impairs the male reproductive system through the testicular microenvironment. METHODS: Ten-week-old male mice (n = 8 mice/group) were maintained at a normal temperature (25°C, control) or subjected to HS (38°C for 2 h each day, HS) for 2 wk. The epididymides and testes were collected at week 2 to determine sperm quality, histopathology, retinol concentration, the expression of retinol metabolism-related genes, and the testicular microbiome. The testicular microbiome profiles were analyzed using biostatistics and bioinformatics; other data were analyzed using a 2-sided Student's t test. RESULTS: Compared with the control, HS reduced (P < 0.05) sperm count (42.4%) and motility (97.7%) and disrupted the integrity of the blood-testis barrier. Testicular microbial profiling analysis revealed that HS increased the abundance of the genera Asticcacaulis, Enhydrobacter, and Stenotrophomonas (P < 0.05) and decreased the abundance of the genera Enterococcus and Pleomorphomonas (P < 0.05). Notably, the abundance of Asticcacaulis spp. showed a significant negative correlation with sperm count (P < 0.001) and sperm motility (P < 0.001). Moreover, Asticcacaulis spp. correlated significantly with most blood differential metabolites, particularly retinol (P < 0.05). Compared with the control, HS increased serum retinol concentrations (25.3%) but decreased the testis retinol concentration by 23.7%. Meanwhile, HS downregulated (P < 0.05) the expression of 2 genes (STRA6 and RDH10) and a protein (RDH10) involved in retinol metabolism by 27.3%-36.6% in the testis compared with the control. CONCLUSIONS: HS reduced sperm quality, mainly because of an imbalance in the testicular microenvironment potentially caused by an increase in Asticcacaulis spp. and disturbed retinol metabolism. These findings may offer new strategies for improving male reproductive capacity under HS.


Subject(s)
Testis , Vitamin A , Male , Mice , Animals , Testis/metabolism , Vitamin A/metabolism , Sperm Motility , Semen , Spermatozoa/metabolism , Spermatozoa/pathology , Heat-Shock Response
14.
Toxins (Basel) ; 15(9)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37755939

ABSTRACT

Mycotoxins occur widely in various animal feedstuffs, with more than 500 mycotoxins identified so far [...].

15.
Sci China Life Sci ; 66(12): 2877-2895, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37480471

ABSTRACT

Heat stress induces multi-organ damage and serious physiological dysfunction in mammals, and gut bacteria may translocate to extra-intestinal tissues under heat stress pathology. However, whether gut bacteria translocate to the key metabolic organs and impair function as a result of heat stress remains unknown. Using a heat stress-induced mouse model, heat stress inhibited epididymal white adipose tissue (eWAT) expansion and induced lipid metabolic disorder but did not damage other organs, such as the heart, liver, spleen, or muscle. Microbial profiling analysis revealed that heat stress shifted the bacterial community in the cecum and eWAT but not in the inguinal white adipose tissue, blood, heart, liver, spleen, or muscle. Notably, gut-vascular barrier function was impaired, and the levels of some bacteria, particularly Lactobacillus, were higher in the eWAT, as confirmed by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) staining when mice were under heat stress. Moreover, integrated multi-omics analysis showed that the eWAT microbiota was associated with host lipid metabolism, and the expression of genes involved in the lipid metabolism in eWAT was upregulated under heat stress. A follow-up microbial supplementation study after introducing Lactobacillus plantarum to heat-stressed mice revealed that the probiotic ameliorated heat stress-induced loss of eWAT and dyslipidemia and reduced gut bacterial translocation to the eWAT by improving gut barrier function. Overall, our findings suggest that gut bacteria, particularly Lactobacillus spp., play a crucial role in heat stress-induced lipid metabolism disorder and that there is therapeutic potential for using probiotics, such as Lactobacillus plantarum.


Subject(s)
Gastrointestinal Microbiome , Lactobacillus plantarum , Lipid Metabolism Disorders , Probiotics , Mice , Animals , Lipid Metabolism , In Situ Hybridization, Fluorescence , Adipose Tissue, White/metabolism , Lipid Metabolism Disorders/metabolism , Heat-Shock Response , Adipose Tissue/metabolism , Mammals
16.
Food Chem Toxicol ; 178: 113907, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37343715

ABSTRACT

This study was to evaluate the efficacy of TOXO-XL (XL), an integrated mycotoxin-mitigating agent, on aflatoxin B1 (AFB1)-induced damage in Leghorn male hepatoma (LMH), porcine jejunum epithelial cell line (IPEC-J2) and porcine alveolar macrophages (3D4/21) cells, and to explore its potential mechanisms. The results showed that 30% inhibition concentration (IC30) of AFB1 in LMH, IPEC-J2 and 3D4/21 cells was 0.5, 15.0, and 2.5 mg/L, respectively. Notably, cell viability, ROS, apoptosis and DNA lesion induced by AFB1 (IC30) could be ameliorated by the supplementation with XL at the dosage of 0.025, 0.025 and 0.005%, respectively. Additionally, the migration and phagocytosis abilities impaired by AFB1 were also restored by XL in 3D4/21. Further experiments revealed that XL supplementation markedly attenuated AFB1-induced inflammatory response by decreasing IL-1ß, IL-6 and IL-10 in LMH, IL-6 in IPEC-J2 and IL-1ß in 3D4/21 cells. Meanwhile, XL supplementation reversed the alterations of BAX, BCL-2 and caspase-3 induced by AFB1 in the three cells, suggesting that AFB1-induced apoptosis may be suppressed via the mitochondria-dependent pathway. Furthermore, XL may have a protective effect on the intestinal barrier through the restoration of occludin protein. Conclusively, these findings indicated that XL could alleviate AFB1-induced cytotoxicity in the three cells, potentially through the regulation of cytokines, ROS, apoptotic and DNA damage signaling.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Male , Swine , Animals , Reactive Oxygen Species/metabolism , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , Carcinoma, Hepatocellular/metabolism , Chickens/metabolism , Interleukin-6/metabolism , Epithelial Cells , Apoptosis , Liver Neoplasms/metabolism
17.
J Anim Sci Biotechnol ; 14(1): 29, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36922863

ABSTRACT

BACKGROUND: Deoxynivalenol (DON) is a widespread issue for feed and food safety, leading to animal and human health risks. The objective of this study was to determine whether ferroptosis is involved in DON-induced intestinal injury in piglets. Three groups of 21-day-old male weanling piglets (n = 7/group) were fed a control diet, or diet adding 1.0 or 3.0 mg DON/kg. At week 4, serum and small intestines were collected to assay for biochemistry, histology, redox status and ferroptosis-related genes expression. In addition, the involvement of ferroptosis and the role of FTL gene in DON-induced cell death were further verified in the IPEC-J2 cells. RESULTS: Compared to the control, dietary supplementation of DON at 1.0 and 3.0 mg/kg induced different degrees of damage in the duodenum, jejunum and ileum, and increased (P < 0.05) serum lipopolysaccharide concentration by 46.2%-51.4%. Dietary DON supplementation at 1.0 and (or) 3.0 mg/kg increased (P < 0.05) concentrations of malondialdehyde (17.4%-86.5%) and protein carbonyl by 33.1%-92.3% in the duodenum, jejunum and ileum. In addition, dietary supplemented with DON upregulated (P < 0.05) ferroptotic gene (DMT1) and anti-ferroptotic genes (FTL and FTH1), while downregulated (P < 0.05) anti-ferroptotic genes (FPN, FSP1 and CISD1) in the duodenum of the porcine. Furthermore, the in vitro study has demonstrated that deferiprone, a potent ferroptotic inhibitor, mitigated (P < 0.05) DON-induced cytotoxicity in porcine small intestinal IPEC-J2 cells. Additionally, deferiprone prevented or alleviated (P < 0.05) the dysregulation of ferroptosis-related genes (ACSL4 and FTL) by DON in IPEC-J2 cells. Moreover, specific siRNA knockdown FTL gene expression compromised the DON-induced cell death in IPEC-J2 cells. CONCLUSIONS: In conclusion, this study revealed that ferroptosis is involved in DON-induced intestinal damage in porcine, and sheds a new light on the toxicity of DON to piglets.

18.
J Nutr ; 153(1): 47-55, 2023 01.
Article in English | MEDLINE | ID: mdl-36913478

ABSTRACT

BACKGROUND: Nutritional muscular dystrophy (NMD) in animals is induced by dietary selenium (Se) deficiency. OBJECTIVES: This study was conducted to explore the underlying mechanism of Se deficiency-induced NMD in broilers. METHODS: One-day-old male Cobb broilers (n = 6 cages/diet, 6 birds/cage) were fed a Se-deficient diet (Se-Def, 47 µg Se/kg) or the Se-Def supplemented with 0.3 mg Se/kg (control) for 6 wk. Thigh muscles of broilers were collected at week 6 for measuring Se concentration, histopathology, and transcriptome and metabolome assays. The transcriptome and metabolome data were analyzed with bioinformatics tools and other data were analyzed with Student's t tests. RESULTS: Compared with the control, Se-Def induced NMD in broilers, including reduced (P < 0.05) final body weight (30.7%) and thigh muscle size, reduced number and cross-sectional area of fibers, and loose organization of muscle fibers. Compared with the control, Se-Def decreased (P < 0.05) the Se concentration in the thigh muscle by 52.4%. It also downregulated (P < 0.05) GPX1, SELENOW, TXNRD1-3, DIO1, SELENOF, H, I, K, M, and U by 23.4-80.3% in the thigh muscle compared with the control. Multi-omics analyses indicated that the levels of 320 transcripts and 33 metabolites were significantly altered (P < 0.05) in response to dietary Se deficiency. Integrated transcriptomics and metabolomics analysis revealed that one-carbon metabolism, including the folate and methionine cycle, was primarily dysregulated by Se deficiency in the thigh muscles of broilers. CONCLUSIONS: Dietary Se deficiency induced NMD in broiler chicks, potentially with the dysregulation of one-carbon metabolism. These findings may provide novel treatment strategies for muscle disease.


Subject(s)
Muscular Dystrophies , Selenium , Animals , Male , Selenium/metabolism , Chickens/metabolism , Antioxidants/metabolism , Dietary Supplements , Diet/veterinary , Carbon/metabolism , Animal Feed/analysis
19.
Food Chem Toxicol ; 174: 113682, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36813151

ABSTRACT

The objective of this study was to identify the key glutathione S-transferase (GST) isozymes involved in the detoxification of Aflatoxin B1 (AFB1) in ducks' primary hepatocytes. The full-length cDNA encoding the 10 GST isozymes (GST, GST3, GSTM3, MGST1, MGST2, MGST3, GSTK1, GSTT1, GSTO1 and GSTZ1) were isolated/synthesized from ducks' liver and cloned into the pcDNA3.1(+) vector. The results showed that pcDNA3.1(+)-GSTs plasmids were successfully transferred into the ducks' primary hepatocytes and the mRNA of the 10 GST isozymes were overexpressed by 1.9-3274.7 times. Compared to the control, 75 µg/L (IC30) or 150 µg/L (IC50) AFB1 treatment reduced the cell viability by 30.0-50.0% and increased the LDH activity by 19.8-58.2% in the ducks' primary hepatocytes. Notably, the AFB1-induced changes in cell viability and LDH activity were mitigated by overexpression of GST and GST3. Compared to the cells treated with AFB1, exo-AFB1-8,9-epoxide (AFBO)-GSH, as the major detoxified product of AFB1, was increased in the cells overexpression of GST and GST3. Moreover, the sequences, phylogenetic and domain analysis revealed that the GST and GST3 were orthologous to Meleagris gallopavo GSTA3 and GSTA4. In conclusion, this study found that the ducks' GST and GST3 were orthologous to Meleagris gallopavo GSTA3 and GSTA4, which were involved in the detoxification of AFB1 in ducks' primary hepatocytes.


Subject(s)
Aflatoxin B1 , Ducks , Animals , Isoenzymes/genetics , Phylogeny , Liver , Glutathione Transferase/genetics , Glutathione/genetics
SELECTION OF CITATIONS
SEARCH DETAIL