Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 23(2): 578-591, 2017 02.
Article in English | MEDLINE | ID: mdl-27428886

ABSTRACT

Land-use change due to anthropogenic development is pervasive across the globe and commonly associated with negative consequences for biodiversity. While land-use change has been linked to shifts in the behavior and habitat-use patterns of wildlife species, little is known about its influence on animal population dynamics, despite the relevance of such information for conservation. We conducted the first broad-scale investigation correlating temporal patterns of land-use change with the demographic rates of mule deer, an iconic species in the western United States experiencing wide-scale population declines. We employed a unique combination of long-term (1980-2010) data on residential and energy development across western Colorado, in conjunction with congruent data on deer recruitment, to quantify annual changes in land-use and correlate those changes with annual indices of demographic performance. We also examined annual variation in weather conditions, which are well recognized to influence ungulate productivity, and provided a basis for comparing the relative strength of different covariates in their association with deer recruitment. Using linear mixed models, we found that increasing residential and energy development within deer habitat were correlated with declining recruitment rates, particularly within seasonal winter ranges. Residential housing had two times the magnitude of effect of any other factor we investigated, and energy development had an effect size similar to key weather variables known to be important to ungulate dynamics. This analysis is the first to correlate a demographic response in mule deer with residential and energy development at large spatial extents relevant to population performance, suggesting that further increases in these development types on deer ranges are not compatible with the goal of maintaining highly productive deer populations. Our results underscore the significance of expanding residential development on mule deer populations, a factor that has received little research attention in recent years, despite its rapidly increasing footprint across the landscape.


Subject(s)
Deer , Ecosystem , Energy Intake , Animals , Colorado , Population Dynamics , Seasons , Weather
2.
Glob Chang Biol ; 19(2): 401-10, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23504779

ABSTRACT

Urbanization causes severe environmental degradation and continues to increase in scale and intensity around the world, but little is known about how we should design cities to minimize their ecological impact. With a sprawling style of urban development, low intensity impact is spread across a wide area, and with a compact form of development intense impact is concentrated over a small area; it remains unclear which of these development styles has a lower overall ecological impact. Here, we compare the consequences of compact and sprawling urban growth patterns on bird distributions across the city of Brisbane, Australia. We predicted the impact on bird populations of adding 84,642 houses to the city in either a compact or sprawling design using statistical models of bird distributions. We show that urban growth of any type reduces bird distributions overall, but compact development substantially slows these reductions at the city scale. Urban-sensitive species particularly benefited from compact development at the city scale because large green spaces were left intact, whereas the distributions of nonnative species expanded as a result of sprawling development. As well as minimizing ecological disruption, compact urban development maintains human access to public green spaces. However, backyards are smaller, which impacts opportunities for people to experience nature close to home. Our results suggest that cities built to minimize per capita ecological impact are characterized by high residential density, with large interstitial green spaces and small backyards, and that there are important trade-offs between maintaining city-wide species diversity and people's access to biodiversity in their own backyard.


Subject(s)
Biodiversity , Cities , Animals , Birds , Urbanization
SELECTION OF CITATIONS
SEARCH DETAIL
...