Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 14603, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918533

ABSTRACT

Malaria in eastern Indonesia remains high despite significant reduction and elimination in other parts of the country. A rapid entomological assessment was conducted in eight high malaria endemic regencies of Papua Province, Indonesia, to expedite malaria elimination efforts in this region. This study aims to characterize specific, actionable endpoints toward understanding where and when malaria transmission is happening, where interventions may function best, and identify gaps in protection that result in continued transmission. The entomological assessment included identifying potential vectors through human landing catch (HLC), indoor morning and night resting collections, identification of larval sites through surveillance of water bodies, and vector incrimination toward understanding exposure to malaria transmission. Human landing catches (HLCs) and larval collections identified 10 Anopheles species, namely Anopheles koliensis, Anopheles punctulatus, Anopheles farauti, Anopheles hinesorum, Anopheles longirostris, Anopheles peditaeniatus, Anopheles tesselatus, Anopheles vagus, Anopheles subpictus and Anopheles kochi. The most common and abundant species found overall were An. koliensis and An. punctulatus, while An. farauti was found in large numbers in the coastal areas of Mimika and Sarmi Regencies. Vector incrimination on Anopheles collected from HLCs and night indoor resting demonstrated that An. koliensis and An. punctulatus carried Plasmodium in Keerom, Jayapura, and Sarmi Regencies. Analysis of HLCs for the most common species revealed that the An. koliensis and An. punctulatus, bite indoors and outdoors at equal rates, while An. farauti predominantly bite outdoors. Larval surveillance demonstrated that most water bodies in and surrounding residential areas contained Anopheles larvae. This study demonstrated indoor and outdoor exposure to mosquito bites and gaps in protection, enabling exposure to infectious bites in all regencies. This explains why current malaria control efforts focusing on indoor protection have failed to substantially reduce malaria incidence in the region. Optimization of insecticide-treated bed nets (ITNs), as well as installment of mosquito screens in houses, may further reduce indoor transmission. For outdoor transmission, the use of community-centric approaches to reduce or eliminate larval sources within and surrounding the village through the guidance of locally stationed entomologists, along with Social and Behavior Change mediated health education towards the local adoption of mosquito protection tools during outdoor activities, may reduce malaria transmission.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , Animals , Anopheles/parasitology , Anopheles/physiology , Malaria/transmission , Malaria/epidemiology , Malaria/prevention & control , Humans , Mosquito Vectors/parasitology , Mosquito Vectors/physiology , Indonesia/epidemiology , Larva , Endemic Diseases
2.
Malar J ; 23(1): 88, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539155

ABSTRACT

BACKGROUND: Anopheles vagus (subgenus Cellia) has been identified as a vector for malaria, filariasis, and Japanese encephalitis in Asia. Sporozoites of Plasmodium falciparum and Plasmodium vivax have been found in this zoophilic mosquito in Asia and Indonesia. This study systematically reviews publications regarding An. vagus species, variation, bio-ecology, and malaria transmission in various localities in Asia, especially Indonesia, to determine whether the current data support An. vagus as a species complex. METHODS: The databases Pubmed, Scopus, Europe PMC, and Proquest were searched to identify information regarding the morphology, karyotypes, polytene chromosome, cross-mating, ecology, and molecular identification of An. vagus was then evaluated to determine whether there were possible species complexes. RESULTS: Of the 1326 articles identified, 15 studies were considered for synthesis. The Anopheles spp. samples for this study came from Asia. Eleven studies used morphology to identify An. vagus, with singular studies using each of karyotype identification, chromosomal polytene identification, and cross-breeding experiments. Ten studies used molecular techniques to identify Anopheles spp., including An. vagus. Most studies discovered morphological variations of An. vagus either in the same or different areas and ecological settings. In this review, the members of An. vagus sensu lato grouped based on morphology (An. vagus, An. vagus vagus, An. vagus limosus, and An. limosus), karyotyping (form A and B), and molecular (An. vagus genotype A and B, An. vagus AN4 and AN5). Genetic analysis revealed a high conservation of the ITS2 fragment among members except for the An. vagus genotype B, which was, in fact, Anopheles sundaicus. This review also identified that An. vagus limosus and An. vagus vagus were nearly identical to the ITS2 sequence. CONCLUSION: Literature review studies revealed that An. vagus is conspecific despite the distinct morphological characteristic of An. vagus and An. limosus. Further information using another barcoding tool, such as mitochondrial COI and ND6 and experimental cross-mating between the An. vagus and An. limosus may provide additional evidence for the status of An. vagus as a species complex.


Subject(s)
Anopheles , Malaria , Animals , Phylogeny , Genotype , Mosquito Vectors/genetics
3.
Malar J ; 23(1): 31, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254131

ABSTRACT

BACKGROUND: The emergence of insecticide resistance and outdoor transmission in malaria-endemic areas underlines the urgent need to develop innovative tools, such as spatial repellents (SR), that may circumvent this residual transmission. With limited options for effective insecticides, regular resistance monitoring is warranted for selecting and using appropriate tools. This study evaluates the pyrethroid knockdown resistance (kdr) allele before and after implementing a transfluthrin-based spatial repellent (SR) intervention in placebo-treated clusters. METHODS: This study looks at the frequency distribution of the kdr allele in Sumba Island from June 2015 to August 2018. Insecticide susceptibility tests were carried out on female Anopheles sp. aged 3-5 days against permethrin 21.5 µg/ml, deltamethrin 12.5 µg/ml, and transfluthrin 10 µg/ml using CDC bottle assay. PCR sequencing of representative samples from adult mosquito collections and insecticide tests revealed the presence of kdr mutations (L1014F and L1014S) in the VGSC gene. RESULTS: A total of 12 Anopheles species, Anopheles tesselatus, Anopheles. aconitus, Anopheles barbirostris, Anopheles kochi, Anopheles annularis, Anopheles maculatus, Anopheles sundaicus, Anopheles flavirostris, Anopheles balabacensis, Anopheles indefinitus, Anopheles subpictus, and Anopheles vagus were analysed. Anopheles vagus and An. sundaicus predominated in the larval populations. Susceptibility assays for all insecticides identified fully susceptible phenotypes in all species examined. Anopheles increasing frequency of kdr mutant alleles during the 3 year SR deployment was observed in both SR-treated and placebo areas, a statistically significant increase occurred in each arm. However, it is unclear how significant SR is in causing the increase in mutant alleles. The L1014S, knockdown resistance east type (kdr-e) allele was detected for the first time among the mosquito samples in this study. The L1014F, knockdown resistance west type (kdr-w) allele and heteroduplex form (wild-type-mutant) were found in almost all Anopheles species examined, including An. vagus, An. aconitus, An. subpictus, An. tesselatus, An. annularis, An. flavirostris and An. sundaicus. CONCLUSION: The presence of fully susceptible phenotypes over time, along with an increase in the frequency distribution of the L1014F/S mutations post-intervention, suggest drivers of resistance external to the study, including pyrethroid use in agriculture and long-lasting insecticidal nets (LLINs). However, this does not negate possible SR impacts that support resistance. More studies that enable the comprehension of possible SR-based drivers of resistance in mosquitoes need to be conducted.


Subject(s)
Anopheles , Cyclopropanes , Fluorobenzenes , Insecticides , Animals , Female , Anopheles/genetics , Insecticides/pharmacology , Alleles , Indonesia , Insecticide Resistance/genetics , Permethrin
4.
J Infect Public Health ; 16(11): 1848-1851, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37837920

ABSTRACT

BACKGROUND: Vaccine plays an important role in breaking SARS-CoV-2 transmission and accelerating the path to pandemic recovery. Currently, there is still limited data on heterologous COVID-19 booster vaccination efficacy and effectiveness in Indonesia. METHODS: Antibody response was retrospectively analyzed from 156 serum collected from healthcare workers that have received mRNA-1273 vaccine as the booster against SARS-CoV-2. These individuals had previously received the full two doses of inactivated anti-SARS-CoV-2 vaccine. Serological analysis was performed to measure total antibody, as well as IgA and IgG antibodies specific to spike (S) protein using ECLIA and ELISA methods. RESULTS: A significant increase in total, IgA, and IgG antibody titers was reported in vaccine receiving a third heterologous booster dose of mRNA-based COVID-19 vaccine following two doses of inactivated type. CONCLUSION: The third heterologous booster dose of vaccine may be beneficial to individuals with or without previous history of SARS-CoV-2 infection.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , 2019-nCoV Vaccine mRNA-1273 , Indonesia/epidemiology , Retrospective Studies , COVID-19/prevention & control , SARS-CoV-2 , Health Personnel , Antibodies, Viral , RNA, Messenger , Immunoglobulin A
5.
Malar J ; 22(1): 221, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37528368

ABSTRACT

BACKGROUND: The recent deforestation for agricultural, mining, and human re-settlement has significantly reduced the habitat of many non-human primates (NHPs) in Indonesia and intensifies interaction between the NHPs and humans and thus opening the possibility of pathogen spill-over. The emergence of zoonotic malaria, such as Plasmodium knowlesi, poses an immense threat to the current malaria control and elimination that aims for the global elimination of malaria by 2030. As malaria in humans and NHPs is transmitted by the female Anopheles mosquito, malaria vector control is very important to mitigate the spill-over of the malaria parasite to humans. The present study aims to explore the Anopheles species diversity in human settlements adjacent to the wildlife sanctuary forest in Buton Utara Regency, Southeast Sulawesi, Indonesia, and identify the species that potentially transmit the pathogen from monkey to human in the area. METHODS: Mosquito surveillance was conducted using larval and adult collection, and the collected mosquitoes were identified morphologically and molecularly using the barcoding markers, cytochrome oxidase subunit I (COI), and internal transcribed species 2 (ITS2) genes. Plasmodium sporozoite carriage was conducted on mosquitoes collected through human landing catch (HLC) and human-baited double net trap (HDNT). RESULTS: The results revealed several Anopheles species, such as Anopheles flavirostris (16.6%), Anopheles sulawesi (3.3%), Anopheles maculatus (3.3%), Anopheles koliensis (1.2%), and Anopheles vagus (0.4%). Molecular analysis of the sporozoite carriage using the primate-specific malaria primers identified An. sulawesi, a member of the Leucosphyrus group, carrying Plasmodium inui sporozoite. CONCLUSIONS: This study indicates that the transmission of zoonotic malaria in the area is possible and alerts to the need for mitigation efforts through a locally-tailored vector control intervention and NHPs habitat conservation.


Subject(s)
Anopheles , Malaria , Plasmodium knowlesi , Animals , Adult , Humans , Female , Malaria/epidemiology , Animals, Wild , Anopheles/genetics , Anopheles/parasitology , Indonesia , Mosquito Vectors , Plasmodium knowlesi/genetics , Haplorhini
6.
Malar J ; 22(1): 231, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37553646

ABSTRACT

BACKGROUND: Dihydroartemisinin-piperaquine has been Indonesia's first-line anti-malarial treatment since 2008. Annual therapeutic efficacy studies (TES) done in the last 12 years showed continued high treatment efficacy in uncomplicated Plasmodium falciparum malaria. Although these studies did not show evidence for artemisinin resistance, a slight increase in Late Treatment Failure was observed over time. It is highlight to explore the evolution of genetic markers for ACT partner drug resistance since adopting DHA-PPQ. METHODS: Dry blood spots were identified from a mass blood survey of uncomplicated falciparum malaria patients (N = 50) in Sumba from 2010 to 2018. Analysis of genotypic profile (N = 51) and a Therapeutic Efficacy Study (TES) from Papua (N = 142) from 2020 to 2021, 42-day follow-up. PCR correction using msp1, msp2, and glurp was used to distinguish recrudescence and reinfection. Parasite DNA from DBSs was used for genotyping molecular markers for antimalaria drug resistance, including in Pfk13, pfcrt, and pfmdr1, as well as gene copy number variation in pfpm2/3 and pfmdr1. RESULTS: The study revealed the absence of SNPs associated with ART resistance and several novel SNPs such as L396F, I526V, M579I and N537S (4.25%). In Sumba, the mutant haplotype SDD of pfmdr1 was found in one-third of the isolates, while only 8.9% in Papua. None of the pfcrt mutations linked to piperaquine resistance were observed, but 71% of isolates had pfcrt I356L. Amplification of the pfpm2/3 genes was in Sumba (17.02%) and Papua (13.7%), while pfmdr1 copy number prevalence was low (3.8%) in both areas. For the TES study, ten recurrences of infection were observed on days 28, 35, and 42. Late parasitological failure (LPF) was observed in 10/117 (8.5%) subjects by microscopy. PCR correction revealed that all nine cases were re-infections and one was confirmed as recrudescence. CONCLUSION: This study revealed that DHA-PPQ is still highly effective against P. falciparum. The genetic architecture of the parasite P. falciparum isolates during 2010-2021 revealed single copy of Pfpm2 and pfmdr1 were highly prevalent. The slight increase in DHA-PPQ LTF alerts researchers to start testing other ACTs as alternatives to DHA-PPQ for baseline data in order to get a chance of achieving malaria elimination wants by 2030.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Genetic Markers , DNA Copy Number Variations , Indonesia , Plasmodium falciparum , Malaria, Falciparum/epidemiology , Malaria/drug therapy , Drug Resistance/genetics , Protozoan Proteins/genetics , Protozoan Proteins/therapeutic use
7.
Parasit Vectors ; 16(1): 267, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550692

ABSTRACT

BACKGROUND: Indonesia is home to many species of non-human primates (NHPs). Deforestation, which is still ongoing in Indonesia, has substantially reduced the habitat of NHPs in the republic. This has led to an intensification of interactions between NHPs and humans, which opens up the possibility of pathogen spillover. The aim of the present study was to determine the prevalence of malarial parasite infections in NHPs in five provinces of Indonesia in 2022. Species of the genus Anopheles that can potentially transmit malarial pathogens to humans were also investigated. METHODS: An epidemiological survey was conducted by capturing NHPs in traps installed in several localities in the five provinces, including in the surroundings of a wildlife sanctuary. Blood samples were drawn aseptically after the NHPs had been anesthetized; the animals were released after examination. Blood smears were prepared on glass slides, and dried blood spot tests on filter paper. Infections with Plasmodium spp. were determined morphologically from the blood smears, which were stained with Giemsa solution, and molecularly through polymerase chain reaction and DNA sequencing using rplU oligonucleotides. The NHPs were identified to species level by using the mitochondrial cytochrome c oxidase subunit I gene and the internal transcribed spacer 2 gene as barcoding DNA markers. Mosquito surveillance included the collection of larvae from breeding sites and that of adults through the human landing catch (HLC) method together with light traps. RESULTS: Analysis of the DNA extracted from the dried blood spot tests of the 110 captured NHPs revealed that 50% were positive for Plasmodium, namely Plasmodium cynomolgi, Plasmodium coatneyi, Plasmodium inui, Plasmodium knowlesi and Plasmodium sp. Prevalence determined by microscopic examination of the blood smears was 42%. Species of the primate genus Macaca and family Hylobatidae were identified by molecular analysis. The most common mosquito breeding sites were ditches, puddles and natural ponds. Some of the Anopheles letifer captured through HLC carried sporozoites of malaria parasites that can cause the disease in primates. CONCLUSIONS: The prevalence of malaria in the NHPs was high. Anopheles letifer, a potential vector of zoonotic malaria, was identified following its collection in Central Kalimantan by the HLC method. In sum, the potential for the transmission of zoonotic malaria in several regions of Indonesia is immense.


Subject(s)
Anopheles , Malaria , Plasmodium knowlesi , Animals , Humans , Indonesia/epidemiology , Mosquito Vectors , Malaria/epidemiology , Malaria/veterinary , Malaria/parasitology , Plasmodium knowlesi/genetics , Primates , Macaca , Anopheles/parasitology
8.
PLoS One ; 17(11): e0276783, 2022.
Article in English | MEDLINE | ID: mdl-36374859

ABSTRACT

Malaria vector control interventions in Sumba, Indonesia, have not been able to eliminate malaria. Human drivers of exposure to Anopheles bites were investigated as part of a larger clinical trial evaluating the impact of a spatial repellent product on malaria incidence. Human behavioral observations (HBOs) evaluating temporal and spatial presence, sleeping behaviors, and insecticide treated net (ITN) use, were collected parallel to entomological collections-indoor and outdoor human landing catches (HLCs), and house hold surveys. Data demonstrates that mosquito access to humans, enabled by structurally open houses, is evident by the similar entomological landing rates both inside and outside households. The presence of animals inside houses was associated with increased mosquito entry-however, the number of humans present inside houses was not related to increased mosquito landing. Analyzing mosquito landing rates with human behavior data enables the spatial and temporal estimation of exposure to Anopheles bites, accounting for intervention (ITN) presence and usage. Human behavior adjusted exposure to Anopheles bites was found to be highest in the early in the evening, but continued at lower levels throughout the night. Over the night, most exposure (53%) occurred when people were indoors and not under the protection of nets (asleep or awake) followed by exposure outside (44%). Characterized gaps in protection are outdoor exposure as well as exposure indoors-when awake, and when asleep and not using ITNs. Interestingly, in the primary trial, even though there was not a significant impact of the spatial repellent on vector biting rates by themselves (16%), when factoring in human behavior, there was approximately 28% less exposure in the intervention arm than in the placebo arm. The treated arm had less human behavior adjusted bites in all spaces evaluated though there was proportionally higher exposure indoors. This analysis points to the importance of using HBOs both towards understanding gaps in protection as well as how interventions are evaluated. To mitigate ongoing transmission, understanding context specific spatial and temporal exposure based on the interactions of vectors, humans and interventions would be vital for a directed evidence-based control or elimination strategy.


Subject(s)
Anopheles , Insect Bites and Stings , Insect Repellents , Insecticides , Malaria , Humans , Animals , Malaria/epidemiology , Malaria/prevention & control , Mosquito Control , Indonesia/epidemiology , Mosquito Vectors , Insect Bites and Stings/epidemiology , Insect Repellents/pharmacology , Insecticides/pharmacology , Feeding Behavior
9.
One Health ; 14: 100389, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35686151

ABSTRACT

The emergence of zoonotic malaria in different parts of the world, including Indonesia poses a challenge to the current malaria control and elimination program that target global malaria elimination at 2030. The reported cases in human include Plasmodium knowlesi, P. cynomolgi and P. inui, in South and Southeast Asian region and P. brazilianum and P. simium in Latin America. All are naturally found in the Old and New-world monkeys, macaques spp. This review focuses on the currently available data that may represent primate malaria as an emerging challenge of zoonotic malaria in Indonesia, the distribution of non-human primates and the malaria parasites it carries, changes in land use and deforestation that impact the habitat and intensifies interaction between the non-human primate and the human which facilitate spill-over of the pathogens. Although available data in Indonesia is very limited, a growing body of evidence indicate that the challenge of zoonotic malaria is immense and alerts to the need to conduct mitigation efforts through multidisciplinary approach involving environmental management, non-human primates conservation, disease management and vector control.

10.
Malar J ; 21(1): 166, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35659231

ABSTRACT

BACKGROUND: The East Nusa Tenggara province, Indonesia, contributed to 5% of malaria cases nationally in 2020, with other mosquito-borne diseases, such as dengue and filariasis also being endemic. Monitoring of spatial and temporal vector species compositions and bionomic traits is an efficient method for generating evidence towards intervention strategy optimization and meeting disease elimination goals. METHODS: The impact of a spatial repellent (SR) on human biting mosquitoes was evaluated as part of a parent cluster-randomized, double-blinded, placebo-controlled trial, in Sumba, East Nusa Tenggara. A 10-month (June 2015-March 2016) baseline study was followed by a 24-month intervention period (April 2016 to April 2018)-where half the clusters were randomly assigned either a passive transfluthrin emanator or a placebo control. RESULTS: Human-landing mosquito catches documented a reduction in landing rates related to the SR. Overall, there was a 16.4% reduction (21% indoors, and 11.3% outdoors) in human biting rates (HBR) for Anopheles. For Aedes, there was a 44.3% HBR reduction indoors and a 35.6% reduction outdoors. This reduction was 38.3% indoors and 39.1% outdoors for Armigeres, and 36.0% indoors and 32.3% outdoors for Culex species. Intervention impacts on the HBRs were not significant and are attributed to large inter-household and inter cluster variation. Anopheles flavirostris, Anopheles balabacensis and Anopheles maculatus individually impacted the overall malaria infections hazard rate with statistically significance. Though there was SR-based protection against malaria for all Anopheles species (except Anopheles sundaicus), only five (Anopheles aconitus, Anopheles kochi, Anopheles tessellatus, An. maculatus and An. sundaicus) demonstrated statistical significance. The SR numerically reduced Anopheles parity rates indoors and outdoors when compared to the placebo. CONCLUSION: Evidence demonstrating that Anopheles vectors bite both indoors and outdoors indicates that currently implemented indoor-based vector control tools may not be sufficient to eliminate malaria. The documented impact of the SR intervention on Aedes, Armigeres and Culex species points to its importance in combatting other vector borne diseases. Studies to determine the impact of spatial repellents on other mosquito-borne diseases is recommended.


Subject(s)
Aedes , Anopheles , Culex , Insect Repellents , Malaria , Animals , Humans , Indonesia , Insect Repellents/pharmacology , Malaria/prevention & control , Mosquito Control/methods , Mosquito Vectors
11.
PLoS Negl Trop Dis ; 16(3): e0010316, 2022 03.
Article in English | MEDLINE | ID: mdl-35312689

ABSTRACT

Mosquitoes are important vectors that transmit pathogens to human and other vertebrates. Each mosquito species has specific ecological requirements and bionomic traits that impact human exposure to mosquito bites, and hence disease transmission and vector control. A study of human biting mosquitoes and their bionomic characteristics was conducted in West Sumba and Southwest Sumba Districts, Nusa Tenggara Timur Province, Indonesia from May 2015 to April 2018. Biweekly human landing catches (HLC) of night biting mosquitoes both indoors and outdoors caught a total of 73,507 mosquito specimens (59.7% non-Anopheles, 40.3% Anopheles). A minimum of 22 Culicinae species belonging to four genera (Aedes, Armigeres, Culex, Mansonia), and 13 Anophelinae species were identified. Culex quinquefasciatus was the dominant Culicinae species, Anopheles aconitus was the principal Anopheles species inland, while An. sundaicus was dominant closer to the coast. The overall human biting rate (HBR) was 10.548 bites per person per night (bpn) indoors and 10.551 bpn outdoors. Mosquitoes biting rates were slightly higher indoors for all genera with the exception of Anopheles, where biting rates were slightly higher outdoors. Diurnal and crepuscular Aedes and Armigeres demonstrated declining biting rates throughout the night while Culex and Anopheles biting rates peaked before midnight and then declined. Both anopheline and non-anopheline populations did not have a significant association with temperature (p = 0.3 and 0.88 respectively), or rainfall (p = 0.13 and 0.57 respectively). The point distribution of HBR and seasonal variables did not have a linear correlation. Data demonstrated similar mosquito-human interactions occurring outdoors and indoors and during early parts of the night implying both indoor and outdoor disease transmission potential in the area-pointing to the need for interventions in both spaces. Integrated vector analysis frameworks may enable better surveillance, monitoring and evaluation strategies for multiple diseases.


Subject(s)
Anopheles , Culex , Animals , Ecology , Humans , Indonesia , Mosquito Vectors
12.
Am J Trop Med Hyg ; 103(1): 344-358, 2020 07.
Article in English | MEDLINE | ID: mdl-32431275

ABSTRACT

A cluster-randomized, double-blinded, placebo-controlled trial was conducted to estimate the protective efficacy (PE) of a spatial repellent (SR) against malaria infection in Sumba, Indonesia. Following radical cure in 1,341 children aged ≥ 6 months to ≤ 5 years in 24 clusters, households were given transfluthrin or placebo passive emanators (devices designed to release vaporized chemical). Monthly blood screening and biweekly human-landing mosquito catches were performed during a 10-month baseline (June 2015-March 2016) and a 24-month intervention period (April 2016-April 2018). Screening detected 164 first-time infections and an accumulative total of 459 infections in 667 subjects in placebo-control households, and 134 first-time and 253 accumulative total infections among 665 subjects in active intervention households. The 24-cluster protective effect of 27.7% and 31.3%, for time to first-event and overall (total new) infections, respectively, was not statistically significant. Purportedly, this was due in part to zero to low incidence in some clusters, undermining the ability to detect a protective effect. Subgroup analysis of 19 clusters where at least one infection occurred during baseline showed 33.3% (P-value = 0.083) and 40.9% (P-value = 0.0236, statistically significant at the one-sided 5% significance level) protective effect to first infection and overall infections, respectively. Among 12 moderate- to high-risk clusters, a statistically significant decrease in infection by intervention was detected (60% PE). Primary entomological analysis of impact was inconclusive. Although this study suggests SRs prevent malaria, additional evidence is required to demonstrate the product class provides an operationally feasible and effective means of reducing malaria transmission.


Subject(s)
Cyclopropanes/administration & dosage , Fluorobenzenes/administration & dosage , Housing , Insecticides/administration & dosage , Malaria/prevention & control , Child, Preschool , Double-Blind Method , Female , Humans , Indonesia , Infant , Insect Repellents , Male , Mosquito Control , Mosquito Vectors
13.
Malar J ; 11: 57, 2012 Feb 25.
Article in English | MEDLINE | ID: mdl-22364613

ABSTRACT

BACKGROUND: The gamma-aminobutyric acid (GABA) receptor-chloride channel complex is known to be the target site of dieldrin, a cyclodiene insecticide. GABA-receptors, with a naturally occurring amino acid substitution, A302S/G in the putative ion-channel lining region, confer resistance to cyclodiene insecticides that includes aldrin, chlordane, dieldrin, heptachlor, endrin and endosulphan. METHODS: A total of 154 mosquito samples from 10 provinces of malaria-endemic areas across Indonesia (Aceh, North Sumatra, Bangka Belitung, Lampung, Central Java, East Nusa Tenggara, West Nusa Tenggara, West Sulawesi, Molucca and North Molucca) were obtained and identified by species, using morphological characteristic. The DNA was individually extracted using chelex-ion exchanger and the DNA obtained was used for analyses using sequencing method. RESULTS: Molecular analysis indicated 11% of the total 154 Anopheles samples examined, carried Rdl mutant alleles. All of the alleles were found in homozygous form. Rdl 302S allele was observed in Anopheles vagus (from Central Java, Lampung, and West Nusa Tenggara), Anopheles aconitus (from Central Java), Anopheles barbirostris (from Central Java and Lampung), Anopheles sundaicus (from North Sumatra and Lampung), Anopheles nigerrimus (from North Sumatra), whereas the 302 G allele was only found in Anopheles farauti from Molucca. CONCLUSION: The existence of the Rdl mutant allele indicates that, either insecticide pressure on the Anopheles population in these areas might still be ongoing (though not directly associated with the malaria control programme) or that the mutant form of the Rdl allele is relatively stable in the absence of insecticide. Nonetheless, the finding suggests that integrated pest management is warranted in malaria-endemic areas where insecticides are widely used for other purposes.


Subject(s)
Anopheles/genetics , Antimalarials/pharmacology , Insect Proteins/genetics , Insecticide Resistance , Mutation, Missense , Receptors, GABA/genetics , Animals , Female , Gene Frequency , Indonesia
SELECTION OF CITATIONS
SEARCH DETAIL
...