Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Drug Deliv Transl Res ; 12(1): 294-305, 2022 01.
Article in English | MEDLINE | ID: mdl-33604838

ABSTRACT

Biotherapeutics are highly efficacious, but the pain and inconvenience of chronic injections lead to poor patient compliance and compromise effective disease management. Despite innumerable attempts, oral delivery of biotherapeutics remains unsuccessful due to their degradation in the gastrointestinal (GI) environment and poor intestinal absorption. We have developed an orally ingestible robotic pill (RP) for drug delivery, which protects the biotherapeutic drug payload from digestion in the GI tract and auto-injects it into the wall of the small intestine as a safe, pain-free injection since the intestines are insensate to sharp stimuli. The payload is delivered upon inflation of a balloon folded within the RP, which deflates immediately after drug delivery. Here we present results from two clinical studies demonstrating the safety, tolerability and performance of the RP in healthy humans. In the first study, three versions of the RP (A, B and C) were evaluated, which were identical in all respects except for the diameter of the balloon. The RP successfully delivered a biotherapeutic (octreotide) in 3 out of 12 subjects in group A, 10 out of 20 subjects in group B and 16 out of 20 subjects in group C, with a mean bioavailability of 65 ± 9% (based on successful drug deliveries in groups A and B). Thus,  reliability of drug delivery with the RP ranged from 25 to 80%, with success rate directly related to balloon size. In a separate study, the deployment of the RP was unaffected by fed or fasting conditions suggesting that the RP may be taken with or without food. These promising clinical data suggest that biotherapeutics currently administered parenterally may be safely and reliably delivered via this versatile, orally ingestible drug delivery platform.


Subject(s)
Robotic Surgical Procedures , Administration, Oral , Biological Availability , Drug Delivery Systems , Healthy Volunteers , Humans , Reproducibility of Results
2.
J Biomol Struct Dyn ; 39(9): 3172-3185, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32340563

ABSTRACT

Pyrazinamidase (PZase) is a member of Fe-dependent amidohydrolases that activates pyrazinamide (PZA) into active pyrazinoic acid (POA). PZA, a nicotinamide analogue, is an essential first-line drug used in Mycobacterium tuberculosis (Mtb) treatment. The active form of PZA, POA, is toxic and potently inhibits the growth of latent Mtb, which makes it possible to shorten the conventional 9-month tuberculosis treatment to 6 months. In this study, an extensive molecular dynamics simulation was carried out to the study the resistance mechanism offered by the three mutations Q10P and D12A and G97D. Our results showed that two regions Gln10-His43, Phe50-Gly75 are profoundly affected by these mutations. Among the three mutations, Q10P and D12A mutations strongly disturb the communication among the catalytic triad (Asp8, Lys98 and Cys138). The oxyanion hole is formed between the backbone nitrogen atoms of A134 and C138 which stabilizes the hydroxyl anion of nicotinamide. The D12A mutation greatly disturbs the oxyanion hole formation followed by the Q10P and G97D. Our results also showed that these mutations destabilize the interaction between Fe2+ ion and Asp49, His51, His57 and His71. The binding pocket analysis showed that these mutations increase the cavity volume, which results in loose binding of PZA. MMGBSA analyzes have shown that these mutations reduce the binding affinity to the PZA drug. Our results may provide useful information for the design of new and effective PZase inhibitors based on structural information of WT and mutant PZases.Communicated by Ramaswamy H. Sarma.


Subject(s)
Mycobacterium tuberculosis , Amidohydrolases/genetics , Antitubercular Agents/pharmacology , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/genetics , Pyrazinamide
3.
Pharmacol Res Perspect ; 7(5): e00522, 2019 10.
Article in English | MEDLINE | ID: mdl-31584244

ABSTRACT

Biotherapeutic agents must be administered parenterally to obtain therapeutic blood concentrations, lowering patient compliance and complicating care. An oral delivery platform (ODP) was developed to deliver drugs into the small intestinal wall. This proof-of-concept study was performed in 17 anesthetized, laparotomized swine. In 8 swine weighing 17.4 ± 1.2 kg (mean ± SEM), 20 IU of recombinant human insulin (RHI) were auto-injected into the jejunal wall by placing the ODP inside the jejunum via an enterotomy. In 9 control swine weighing 17.0 ± 0.4 kg, 20 IU of RHI were injected subcutaneously. In both groups, under a 60-80 mg/dL euglycemic glucose clamp, blood glucose was measured with a handheld glucometer and serum insulin was measured using ELISA, at 10-minute intervals between -20 and +420 minutes after RHI delivery. The peak serum concentration of RHI was 517 ± 109 pmol/L in the ODP and 342 ± 50 pmol/L in the subcutaneous group (ns). The areas under the insulin concentration curves (83 ± 18 and 81 ± 10 nmol/L·min) were also similar in both groups. The mean time to peak serum concentration of insulin was 139 ± 42 minutes in the ODP and 227 ± 24 minutes in the subcutaneous group (ns). In conclusion, (a) The bioactivity of RHI was preserved after its delivery into the jejunal wall, (b) the intrajejunal route delivered insulin as rapidly and physiologically as the subcutaneous route, and (c) these pharmacokinetic and pharmacodynamic characteristics of RHI after intrajejunal delivery suggest that drugs currently administered parenterally, such as basal insulin, could be successfully delivered into the proximal intestinal wall via the ingestible capsule.


Subject(s)
Insulin/administration & dosage , Insulin/pharmacokinetics , Jejunum/chemistry , Administration, Oral , Animals , Blood Glucose/analysis , Capsules , Female , Injections, Subcutaneous , Proof of Concept Study , Swine
SELECTION OF CITATIONS
SEARCH DETAIL