Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Physiol ; 594(10): 2729-49, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26918702

ABSTRACT

KEY POINTS: We performed extracellular recording of pairs of interneuron-Purkinje cells in vivo. A single interneuron produces a substantial, short-lasting, inhibition of Purkinje cells. Feed-forward inhibition is associated with characteristic asymmetric cross-correlograms. In vivo, Purkinje cell spikes only depend on the most recent synaptic activity. ABSTRACT: Cerebellar molecular layer interneurons are considered to control the firing rate and spike timing of Purkinje cells. However, interactions between these cell types are largely unexplored in vivo. Using tetrodes, we performed simultaneous extracellular recordings of neighbouring Purkinje cells and molecular layer interneurons, presumably basket cells, in adult rats in vivo. The high levels of afferent synaptic activity encountered in vivo yield irregular spiking and reveal discharge patterns characteristic of feed-forward inhibition, thus suggesting an overlap of the afferent excitatory inputs between Purkinje cells and basket cells. Under conditions of intense background synaptic inputs, interneuron spikes exert a short-lasting inhibitory effect, delaying the following Purkinje cell spike by an amount remarkably independent of the Purkinje cell firing cycle. This effect can be explained by the short memory time of the Purkinje cell potential as a result of the intense incoming synaptic activity. Finally, we found little evidence for any involvement of the interneurons that we recorded with the cerebellar high-frequency oscillations promoting Purkinje cell synchrony. The rapid interactions between interneurons and Purkinje cells might be of particular importance in fine motor control because the inhibitory action of interneurons on Purkinje cells leads to deep cerebellar nuclear disinhibition and hence increased cerebellar output.


Subject(s)
Cerebellar Cortex/physiology , Interneurons/physiology , Neural Inhibition/physiology , Purkinje Cells/physiology , Action Potentials/physiology , Animals , Cerebellar Cortex/cytology , Male , Organ Culture Techniques , Rats , Rats, Wistar , Time Factors
2.
J Physiol ; 594(4): 915-36, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26627919

ABSTRACT

KEY POINTS: At the parallel fibre-Purkinje cell glutamatergic synapse, little or no Ca(2+) entry takes place through postsynaptic neurotransmitter receptors, although postsynaptic calcium increases are clearly involved in the synaptic plasticity. Postsynaptic voltage-gated Ca(2+) channels therefore constitute the sole rapid postsynaptic Ca(2+) signalling mechanism, making it essential to understand how they contribute to the synaptic signalling. Using a selective T-type calcium channel antagonist, we describe a T-type component of the EPSC that is activated by the AMPA receptor-mediated depolarization of the spine and thus will contribute to the local calcium dynamics. This component can amount up to 20% of the EPSC, and this fraction is maintained even at the high frequencies sometimes encountered in sensory processing. Modelling based on our biophysical characterization of T-type calcium channels in Purkinje cells suggests that the brief spine EPSCs cause the activated T-type channels to deactivate rather than inactivate, enabling repetitive activation. ABSTRACT: In the cerebellum, sensory information is conveyed to Purkinje cells (PC) via the granule cell/parallel fibre (PF) pathway. Plasticity at the PF-PC synapse is considered to be a mechanism of information storage in motor learning. The induction of synaptic plasticity in the cerebellum and elsewhere usually involves intracellular Ca(2+) signals. Unusually, postsynaptic Ca(2+) signalling in PF-PC spines does not involve ionotropic glutamatergic receptors because postsynaptic NMDA receptors are absent and the AMPA receptors are Ca(2+) -impermeable; postsynaptic voltage-gated Ca(2+) channels therefore constitute the sole rapid Ca(2+) signalling mechanism. Low-threshold activated T-type calcium channels are present at the synapse, although their contribution to PF-PC synaptic responses is unknown. Taking advantage of 3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide, a selective T-type channel antagonist, we show in the mouse that inhibition of these channels reduces PF-PC excitatory postsynaptic currents and excitatory postsynaptic potentials by 15-20%. This contribution was preserved during sparse input and repetitive activity. We characterized the biophysical properties of native T-type channels in young animals and modelled their activation during simulated dendritic excitatory postsynaptic potential waveforms. The comparison of modelled and observed synaptic responses suggests that T-type channels only activate in spines that are strongly depolarized by their synaptic input, a process requiring a high spine neck resistance. This brief and local activation ensures that T-type channels rapidly deactivate, thereby limiting inactivation during repetitive synaptic activity. T-type channels are therefore ideally situated to provide synaptic Ca(2+) entry at PF-PC spines.


Subject(s)
Calcium Channels, T-Type/metabolism , Excitatory Postsynaptic Potentials , Purkinje Cells/metabolism , Synapses/metabolism , Animals , Calcium Channel Blockers/pharmacology , Calcium Signaling , Male , Mice , Mice, Inbred C57BL , Purkinje Cells/drug effects , Purkinje Cells/physiology , Synapses/physiology
3.
J Neurosci ; 35(18): 7056-68, 2015 May 06.
Article in English | MEDLINE | ID: mdl-25948257

ABSTRACT

The attenuation of neuronal voltage responses to high-frequency current inputs by the membrane capacitance is believed to limit single-cell bandwidth. However, neuronal populations subject to stochastic fluctuations can follow inputs beyond this limit. We investigated this apparent paradox theoretically and experimentally using Purkinje cells in the cerebellum, a motor structure that benefits from rapid information transfer. We analyzed the modulation of firing in response to the somatic injection of sinusoidal currents. Computational modeling suggested that, instead of decreasing with frequency, modulation amplitude can increase up to high frequencies because of cellular morphology. Electrophysiological measurements in adult rat slices confirmed this prediction and displayed a marked resonance at 200 Hz. We elucidated the underlying mechanism, showing that the two-compartment morphology of the Purkinje cell, interacting with a simple spiking mechanism and dendritic fluctuations, is sufficient to create high-frequency signal amplification. This mechanism, which we term morphology-induced resonance, is selective for somatic inputs, which in the Purkinje cell are exclusively inhibitory. The resonance sensitizes Purkinje cells in the frequency range of population oscillations observed in vivo.


Subject(s)
Action Potentials/physiology , Neurons/physiology , Purkinje Cells/physiology , Animals , Cerebellum/cytology , Cerebellum/physiology , Male , Rats , Rats, Wistar
4.
Article in English | MEDLINE | ID: mdl-25750623

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) in cerebellar molecular layer interneurons (MLIs) are expressed and activated in unusual ways: at parallel fibre (PF) synapses they are only recruited by repetitive stimuli, suggesting an extrasynaptic location, whereas their activation by climbing fibre is purely mediated by spillover. NMDARs are thought to play an important role in plasticity at different levels of the cerebellar circuitry. Evaluation of the location, functional properties and physiological roles of NMDARs will be facilitated by knowledge of the NMDAR isoforms recruited. Here we show that MLI-NMDARs activated by both PF and climbing fibre inputs have similar kinetics and contain GluN2B but not GluN2A subunits. On the other hand, no evidence was found of functional NMDARs in the axons of MLIs. At the PF-Purkinje cell (PF-PC) synapse, the activation of GluN2A-containing NMDARs has been shown to be necessary for the induction of long-term depression (LTD). Our results therefore provide a clear distinction between the NMDARs located on MLIs and those involved in plasticity at PF-PC synapses.

5.
Neuron ; 58(5): 775-88, 2008 Jun 12.
Article in English | MEDLINE | ID: mdl-18549788

ABSTRACT

The cerebellum controls complex, coordinated, and rapid movements, a function requiring precise timing abilities. However, the network mechanisms that underlie the temporal organization of activity in the cerebellum are largely unexplored, because in vivo recordings have usually targeted single units. Here, we use tetrode and multisite recordings to demonstrate that Purkinje cell activity is synchronized by a high-frequency (approximately 200 Hz) population oscillation. We combine pharmacological experiments and modeling to show how the recurrent inhibitory connections between Purkinje cells are sufficient to generate these oscillations. A key feature of these oscillations is a fixed population frequency that is independent of the firing rates of the individual cells. Convergence in the deep cerebellar nuclei of Purkinje cell activity, synchronized by these oscillations, likely organizes temporally the cerebellar output.


Subject(s)
Action Potentials/physiology , Biological Clocks/physiology , Cerebellum/cytology , Purkinje Cells/physiology , Action Potentials/drug effects , Anesthesia/methods , Animals , Benzodiazepines/pharmacology , Benzoxazines/pharmacology , Biological Clocks/drug effects , Cannabinoids/pharmacology , Dose-Response Relationship, Radiation , Electric Stimulation , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/radiation effects , GABA Antagonists/pharmacology , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/physiology , Male , Models, Neurological , Morpholines/pharmacology , Naphthalenes/pharmacology , Picrotoxin/pharmacology , Piperidines/pharmacology , Pyrazoles/pharmacology , Quinoxalines/pharmacology , Rats , Rats, Wistar , Reaction Time/physiology
6.
Nat Neurosci ; 10(6): 735-42, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17515900

ABSTRACT

Spillover of glutamate under physiological conditions has only been established as an adjunct to conventional synaptic transmission. Here we describe a pure spillover connection between the climbing fiber and molecular layer interneurons in the rat cerebellar cortex. We show that, instead of acting via conventional synapses, multiple climbing fibers activate AMPA- and NMDA-type glutamate receptors on interneurons exclusively via spillover. Spillover from the climbing fiber represents a form of glutamatergic volume transmission that could be triggered in a regionalized manner by experimentally observed synchronous climbing fiber activity. Climbing fibers are known to direct parallel fiber synaptic plasticity in interneurons, so one function of this spillover is likely to involve controlling synaptic plasticity.


Subject(s)
Cerebellum/cytology , Glutamates/metabolism , Interneurons/physiology , Nerve Fibers/physiology , Animals , Animals, Newborn , Dose-Response Relationship, Drug , Electric Stimulation/methods , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/radiation effects , In Vitro Techniques , Interneurons/drug effects , Interneurons/radiation effects , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Membrane Potentials/radiation effects , Nerve Fibers/radiation effects , Patch-Clamp Techniques/methods , Rats , Rats, Wistar , Receptors, AMPA/physiology , Receptors, N-Methyl-D-Aspartate/physiology
7.
An. acad. bras. ciênc ; 76(3): 573-582, Sept. 2004.
Article in English | LILACS | ID: lil-364484

ABSTRACT

A retenção das memórias é avaliada através da sua expressão. A expressão do traço mnemônico é iniciada freqüentemente pelo estímulo condicionado (CS); porém, como definido por Pavlov, a apresentação apenas do CS induz extinção. A esquiva inibitória de apenas uma sessão (IA) é um paradigma de condicionamento ao medo muito utilizado, no qual o CS é a parte segura da caixa de treinamento (plataforma), o estímulo incondicionado (US) é um choque aplicado nas patas do animal quando o mesmo desce da plataforma e a resposta condicionada é permanecer na área segura. Na IA, a expressão da memória é medida na ausência do US, sendo definida como a latência para descer da área segura. A extinção é instalada no momento da primeira sessão de teste, tal como fica claramente demonstrado pelo fato de que várias drogas, entre elas inibidores de síntese protéica, de PKA e de ERK e antagonistas dos receptores NMDA, impedem a extinção quando administrados no hipocampo ou na amígdala basolateral no momento da primeira sessão de teste, mas não mais tardiamente. Alguns, mas não todos os sistemas moleculares requeridos para a extinção, também são ativados pela expressão das memórias, fortalecendo a hipótese de que mesmo que a expressão seja comportamental e bioquimicamente necessária para a ocorrência da extinção, este último processo constitui um novo aprendizado, secundário a expressão do traço original.


Subject(s)
Animals , Behavior, Animal , Conditioning, Classical , Extinction, Psychological , Hippocampus , Memory, Short-Term , Avoidance Learning
8.
An Acad Bras Cienc ; 76(3): 573-82, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15334255

ABSTRACT

Memory is measured by measuring retrieval. Retrieval is often triggered by the conditioned stimulus (CS); however, as known since Pavlov, presentation of the CS alone generates extinction. One-trial avoidance (IA) is a much used conditioned fear paradigm in which the CS is the safe part of a training apparatus, the unconditioned stimulus (US) is a footshock and the conditioned response is to stay in the safe area. In IA, retrieval is measured without the US, as latency to step-down from the safe area (i.e., a platform). Extinction is installed at the moment of the first unreinforced test session, as clearly shown by the fact that many drugs, including PKA, ERK and protein synthesis inhibitors as well as NMDA receptor antagonists, hinder extinction when infused into the hippocampus or the basolateral amygdala at the moment of the first test session but not later. Some, but not all the molecular systems required for extinction are also activated by retrieval, further endorsing the hypothesis that although retrieval is behaviorally and biochemically necessary for the generation of extinction, this last process constitutes a new learning secondary to the unreinforced expression of the original trace.


Subject(s)
Conditioning, Classical/physiology , Extinction, Psychological/physiology , Hippocampus/physiology , Memory, Short-Term/physiology , Animals , Avoidance Learning/physiology , Behavior, Animal/physiology , Hippocampus/metabolism , Humans , Mental Recall/physiology
9.
Hippocampus ; 13(1): 53-8, 2003.
Article in English | MEDLINE | ID: mdl-12625457

ABSTRACT

Pavlovian conditioning involves the association of initially neutral conditioned stimuli (CS) with unconditioned stimuli (US) that elicit a response. In contextual fear conditioning in rodents, the CS is the context of a training apparatus and the US is a foot shock. Retrieval of memory of the training is tested by presenting the CS alone. But a retrieval test also initiates extinction of the conditioned response. That is, presentation of the CS alone results in new learning, i.e., the CS no longer predicts the US. Here we report that extinction is triggered by two hippocampal signaling pathways underlying retrieval (the cAMP-dependent protein kinase and the mitogen-activated protein kinase pathways) and two other mechanisms that become activated at the same time and are not necessary for retrieval (N-methyl-D-aspartate glutamatergic receptors and the calcium/calmodulin-dependent protein kinase II signaling pathway). Thus, the molecular mechanisms underlying acquisition and/or consolidation of the memory for extinction are similar to those described for the acquisition and/or consolidation of the original contextual fear.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Extinction, Psychological/physiology , Fear/physiology , Hippocampus/metabolism , MAP Kinase Signaling System/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors , Conditioning, Psychological/drug effects , Conditioning, Psychological/physiology , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Extinction, Psychological/drug effects , Fear/drug effects , Hippocampus/drug effects , Learning/drug effects , Learning/physiology , MAP Kinase Signaling System/drug effects , Male , Memory/drug effects , Memory/physiology , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Synapses/drug effects , Synapses/metabolism , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
10.
Hippocampus ; 12(4): 551-60, 2002.
Article in English | MEDLINE | ID: mdl-12201640

ABSTRACT

Information storage in the brain is a temporally graded process involving different memory types or phases. It has been assumed for over a century that one or more short-term memory (STM) processes are involved in processing new information while long-term memory (LTM) is being formed. Because brain-derived neutrophic factor (BDNF) modulates both short-term synaptic function and activity-dependent synaptic plasticity in the adult hippocampus, we examined the role of BDNF in STM and LTM formation of a hippocampal-dependent one-trial fear-motivated learning task in rats. Using a competitive RT-PCR quantitation method, we found that inhibitory avoidance training is associated with a rapid and transient increase in BDNF mRNA expression in the hippocampus. Bilateral infusions of function-blocking anti-BDNF antibody into the CA, region of the dorsal hippocampus decreased extracellular signal-regulated kinase 2 (ERK2) activation and impaired STM retention scores. Inhibition of ERK1/2 activation by PD098059 produced similar effects. In contrast, intrahippocampal administration of recombinant human BDNF increased ERK1/2 activation and facilitated STM. The infusion of anti-BDNF antibody impaired LTM when given 15 min before or 1 and 4 hr after training, but not at 0 or 6 hr posttraining, indicating that two hippocampal BDNF-sensitive time windows are critical for LTM formation. At the same time points, PD098059 produced no LTM deficits. Thus, our results indicate that endogenous BDNF is required for both STM and LTM formation of an inhibitory avoidance learning. Additionally, they suggest that this requirement involves ERK1/2-dependent and -independent mechanisms.


Subject(s)
Brain-Derived Neurotrophic Factor/physiology , Hippocampus/physiology , Memory, Short-Term/physiology , Memory/physiology , Animals , Antibodies/administration & dosage , Avoidance Learning/physiology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/immunology , Brain-Derived Neurotrophic Factor/pharmacology , Drug Administration Schedule , Enzyme Activation/physiology , Enzyme Inhibitors/pharmacology , Fear/physiology , Flavonoids/pharmacology , Learning/physiology , Male , Memory/drug effects , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Recombinant Proteins/pharmacology , Retention, Psychology/physiology , Time Factors
11.
Neurochem Res ; 27(11): 1491-8, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12512953

ABSTRACT

Memory retrieval is a fundamental component or stage of memory processing. In fact, retrieval is the only possible measure of memory. The ability to recall past events is a major determinant of survival strategies in all species and is of paramount importance in determining our uniqueness as individuals. Most biological studies of memory using brain lesion and/or gene manipulation techniques cannot distinguish between effects on the molecular mechanisms of the encoding or consolidation of memories and those responsible for their retrieval from storage. Here we examine recent findings indicating the major molecular steps involved in memory retrieval in selected brain regions of the mammalian brain. Together the findings strongly suggest that memory formation and retrieval may share some molecular mechanisms in the hippocampus and that retrieval initiates extinction requiring activation of several signaling cascades and protein synthesis.


Subject(s)
Memory , Animals , Avoidance Learning , Hippocampus/physiology , Humans , Neuronal Plasticity
12.
Neurotox Res ; 4(5-6): 573-593, 2002.
Article in English | MEDLINE | ID: mdl-12754168

ABSTRACT

Many, if not all psychiatric diseases are accompanied by memory disturbances, in particular, the dementias, schizophrenia, and, to an extent, mood disorders. Anxiety and stress, on the other hand, cause important alterations of memory, particularly its retrieval. Here we discuss several new findings on the basic mechanisms of consolidation, retrieval and extinction of a prototype form of episodic memory in the rat: conditioned fear. The findings point the way for investigations on the pathology of these aspects of memory in health and disease. Emphasis is placed on the parallel processing of retrieval in several cortical areas, on the links between retrieval and the onset of extinction, on the fact that extinction involves new learning requiring gene expression, and on the differences between the retrieval of recent or remote long-term memories.

SELECTION OF CITATIONS
SEARCH DETAIL
...