Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
PLoS Comput Biol ; 20(3): e1011888, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38446830

ABSTRACT

Tumor heterogeneity is a complex and widely recognized trait that poses significant challenges in developing effective cancer therapies. In particular, many tumors harbor a variety of subpopulations with distinct therapeutic response characteristics. Characterizing this heterogeneity by determining the subpopulation structure within a tumor enables more precise and successful treatment strategies. In our prior work, we developed PhenoPop, a computational framework for unravelling the drug-response subpopulation structure within a tumor from bulk high-throughput drug screening data. However, the deterministic nature of the underlying models driving PhenoPop restricts the model fit and the information it can extract from the data. As an advancement, we propose a stochastic model based on the linear birth-death process to address this limitation. Our model can formulate a dynamic variance along the horizon of the experiment so that the model uses more information from the data to provide a more robust estimation. In addition, the newly proposed model can be readily adapted to situations where the experimental data exhibits a positive time correlation. We test our model on simulated data (in silico) and experimental data (in vitro), which supports our argument about its advantages.


Subject(s)
Genetic Phenomena , Neoplasms , Humans , Drug Evaluation, Preclinical , Neoplasms/drug therapy , Neoplasms/pathology
2.
PLoS Comput Biol ; 20(2): e1011878, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38386690

ABSTRACT

Mutant selection windows (MSWs), the range of drug concentrations that select for drug-resistant mutants, have long been used as a model for predicting drug resistance and designing optimal dosing strategies in infectious disease. The canonical MSW model offers comparisons between two subtypes at a time: drug-sensitive and drug-resistant. In contrast, the fitness landscape model with N alleles, which maps genotype to fitness, allows comparisons between N genotypes simultaneously, but does not encode continuous drug response data. In clinical settings, there may be a wide range of drug concentrations selecting for a variety of genotypes in both cancer and infectious diseases. Therefore, there is a need for a more robust model of the pathogen response to therapy to predict resistance and design new therapeutic approaches. Fitness seascapes, which model genotype-by-environment interactions, permit multiple MSW comparisons simultaneously by encoding genotype-specific dose-response data. By comparing dose-response curves, one can visualize the range of drug concentrations where one genotype is selected over another. In this work, we show how N-allele fitness seascapes allow for N * 2N-1 unique MSW comparisons. In spatial drug diffusion models, we demonstrate how fitness seascapes reveal spatially heterogeneous MSWs, extending the MSW model to more fully reflect the selection of drug resistant genotypes. Furthermore, using synthetic data and empirical dose-response data in cancer, we find that the spatial structure of MSWs shapes the evolution of drug resistance in an agent-based model. By simulating a tumor treated with cyclic drug therapy, we find that mutant selection windows introduced by drug diffusion promote the proliferation of drug resistant cells. Our work highlights the importance and utility of considering dose-dependent fitness seascapes in evolutionary medicine.


Subject(s)
Neoplasms , Humans , Mutation , Genotype , Neoplasms/drug therapy , Neoplasms/genetics , Selection, Genetic
3.
bioRxiv ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-36993678

ABSTRACT

The evolution of resistance remains one of the primary challenges for modern medicine from infectious diseases to cancers. Many of these resistance-conferring mutations often carry a substantial fitness cost in the absence of treatment. As a result, we would expect these mutants to undergo purifying selection and be rapidly driven to extinction. Nevertheless, pre-existing resistance is frequently observed from drug-resistant malaria to targeted cancer therapies in non-small cell lung cancer (NSCLC) and melanoma. Solutions to this apparent paradox have taken several forms from spatial rescue to simple mutation supply arguments. Recently, in an evolved resistant NSCLC cell line, we found that frequency-dependent ecological interactions between ancestor and resistant mutant ameliorate the cost of resistance in the absence of treatment. Here, we hypothesize that frequency-dependent ecological interactions in general play a major role in the prevalence of pre-existing resistance. We combine numerical simulations with robust analytical approximations to provide a rigorous mathematical framework for studying the effects of frequency-dependent ecological interactions on the evolutionary dynamics of pre-existing resistance. First, we find that ecological interactions significantly expand the parameter regime under which we expect to observe pre-existing resistance. Next, even when positive ecological interactions between mutants and ancestors are rare, these resistant clones provide the primary mode of evolved resistance because even weak positive interaction leads to significantly longer extinction times. We then find that even in the case where mutation supply alone is sufficient to predict pre-existing resistance, frequency-dependent ecological forces still contribute a strong evolutionary pressure that selects for increasingly positive ecological effects (negative frequency-dependent selection). Finally, we genetically engineer several of the most common clinically observed resistance mechanisms to targeted therapies in NSCLC, a treatment notorious for pre-existing resistance. We find that each engineered mutant displays a positive ecological interaction with their ancestor. As a whole, these results suggest that frequency-dependent ecological effects can play a crucial role in shaping the evolutionary dynamics of pre-existing resistance.

4.
Cell Rep Methods ; 3(12): 100654, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38065095

ABSTRACT

Current treatment selection for acute myeloid leukemia (AML) patients depends on risk stratification based on cytogenetic and genomic markers. However, the forecasting accuracy of treatment response remains modest, with most patients receiving intensive chemotherapy. Recently, ex vivo drug screening has gained traction in personalized treatment selection and as a tool for mapping patient groups based on relevant cancer dependencies. Here, we systematically evaluated the use of drug sensitivity profiling for predicting patient survival and clinical response to chemotherapy in a cohort of AML patients. We compared computational methodologies for scoring drug efficacy and characterized tools to counter noise and batch-related confounders pervasive in high-throughput drug testing. We show that ex vivo drug sensitivity profiling is a robust and versatile approach to patient prognostics that comprehensively maps functional signatures of treatment response and disease progression. In conclusion, ex vivo drug profiling can assess risk for individual AML patients and may guide clinical decision-making.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/diagnosis
5.
J Math Biol ; 86(5): 68, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37017776

ABSTRACT

Theoretical and applied cancer studies that use individual-based models (IBMs) have been limited by the lack of a mathematical formulation that enables rigorous analysis of these models. However, spatial cumulant models (SCMs), which have arisen from theoretical ecology, describe population dynamics generated by a specific family of IBMs, namely spatio-temporal point processes (STPPs). SCMs are spatially resolved population models formulated by a system of differential equations that approximate the dynamics of two STPP-generated summary statistics: first-order spatial cumulants (densities), and second-order spatial cumulants (spatial covariances). We exemplify how SCMs can be used in mathematical oncology by modelling theoretical cancer cell populations comprising interacting growth factor-producing and non-producing cells. To formulate model equations, we use computational tools that enable the generation of STPPs, SCMs and mean-field population models (MFPMs) from user-defined model descriptions (Cornell et al. Nat Commun 10:4716, 2019). To calculate and compare STPP, SCM and MFPM-generated summary statistics, we develop an application-agnostic computational pipeline. Our results demonstrate that SCMs can capture STPP-generated population density dynamics, even when MFPMs fail to do so. From both MFPM and SCM equations, we derive treatment-induced death rates required to achieve non-growing cell populations. When testing these treatment strategies in STPP-generated cell populations, our results demonstrate that SCM-informed strategies outperform MFPM-informed strategies in terms of inhibiting population growths. We thus demonstrate that SCMs provide a new framework in which to study cell-cell interactions, and can be used to describe and perturb STPP-generated cell population dynamics. We, therefore, argue that SCMs can be used to increase IBMs' applicability in cancer research.


Subject(s)
Ecology , Neoplasms , Humans , Population Dynamics , Population Growth , Models, Biological
6.
Cell Rep Methods ; 3(3): 100417, 2023 03 27.
Article in English | MEDLINE | ID: mdl-37056380

ABSTRACT

Tumor heterogeneity is an important driver of treatment failure in cancer since therapies often select for drug-tolerant or drug-resistant cellular subpopulations that drive tumor growth and recurrence. Profiling the drug-response heterogeneity of tumor samples using traditional genomic deconvolution methods has yielded limited results, due in part to the imperfect mapping between genomic variation and functional characteristics. Here, we leverage mechanistic population modeling to develop a statistical framework for profiling phenotypic heterogeneity from standard drug-screen data on bulk tumor samples. This method, called PhenoPop, reliably identifies tumor subpopulations exhibiting differential drug responses and estimates their drug sensitivities and frequencies within the bulk population. We apply PhenoPop to synthetically generated cell populations, mixed cell-line experiments, and multiple myeloma patient samples and demonstrate how it can provide individualized predictions of tumor growth under candidate therapies. This methodology can also be applied to deconvolution problems in a variety of biological settings beyond cancer drug response.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Early Detection of Cancer , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Cell Line , Genomics
7.
bioRxiv ; 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-36993598

ABSTRACT

Evolution is a stochastic yet inevitable process that lies at the heart of biology yet in the multi-cellular environments within patients, ecological complexities arise via heterogeneity and microenvironments. The interplay of ecology and mutation is thus fundamental to predicting the evolution of complex diseases and engineering optimal treatment solutions. As experimental evidence of ecological interactions between disease agents continues to grow, so does the need for evolutionary theory and modeling that incorporates these interaction effects. Inspired by experimental cell biology, we transform the variables in the interaction payoff matrix to encode cell-cell interactions in our mathematical approach as growth-rate modifying, frequency-dependent interactions. In this way, we can show the extent to which the presence of these cell-extrinsic ecological interactions can modify the evolutionary trajectories that would be predicted from cell-intrinsic properties alone. To do this we form a Fokker-Planck equation for a genetic population undergoing diffusion, drift, and interactions and generate a novel, analytic solution for the stationary distribution. We use this solution to determine when these interactions can modify evolution in such ways as to maintain, mask, or mimic mono-culture fitness differences. This work has implications for the interpretation and understanding of experimental and patient evolution and is a result that may help to explain the abundance of apparently neutral evolution in cancer systems and heterogeneous populations in general. In addition, the derivation of an analytical result for stochastic, ecologically dependent evolution paves the way for treatment approaches requiring knowledge of a stationary solution for the development of control protocols.

9.
Nat Commun ; 14(1): 115, 2023 01 07.
Article in English | MEDLINE | ID: mdl-36611026

ABSTRACT

Aberrant pro-survival signaling is a hallmark of cancer cells, but the response to chemotherapy is poorly understood. In this study, we investigate the initial signaling response to standard induction chemotherapy in a cohort of 32 acute myeloid leukemia (AML) patients, using 36-dimensional mass cytometry. Through supervised and unsupervised machine learning approaches, we find that reduction of extracellular-signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK) phosphorylation in the myeloid cell compartment 24 h post-chemotherapy is a significant predictor of patient 5-year overall survival in this cohort. Validation by RNA sequencing shows induction of MAPK target gene expression in patients with high phospho-ERK1/2 24 h post-chemotherapy, while proteomics confirm an increase of the p38 prime target MAPK activated protein kinase 2 (MAPKAPK2). In this study, we demonstrate that mass cytometry can be a valuable tool for early response evaluation in AML and elucidate the potential of functional signaling analyses in precision oncology diagnostics.


Subject(s)
Leukemia, Myeloid, Acute , Precision Medicine , Humans , Signal Transduction , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Phosphorylation , p38 Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/physiology
10.
J Biol Chem ; 296: 100179, 2021.
Article in English | MEDLINE | ID: mdl-33303632

ABSTRACT

Breakpoint Cluster Region-Abelson kinase (BCR-Abl) is a driver oncogene that causes chronic myeloid leukemia and a subset of acute lymphoid leukemias. Although tyrosine kinase inhibitors provide an effective treatment for these diseases, they generally do not kill leukemic stem cells (LSCs), the cancer-initiating cells that compete with normal hematopoietic stem cells for the bone marrow niche. New strategies to target cancers driven by BCR-Abl are therefore urgently needed. We performed a small molecule screen based on competition between isogenic untransformed cells and BCR-Abl-transformed cells and identified several compounds that selectively impair the fitness of BCR-Abl-transformed cells. Interestingly, systems-level analysis of one of these novel compounds, DJ34, revealed that it induced depletion of c-Myc and activation of p53. DJ34-mediated c-Myc depletion occurred in a wide range of tumor cell types, including lymphoma, lung, glioblastoma, breast cancer, and several forms of leukemia, with primary LSCs being particularly sensitive to DJ34. Further analyses revealed that DJ34 interferes with c-Myc synthesis at the level of transcription, and we provide data showing that DJ34 is a DNA intercalator and topoisomerase II inhibitor. Physiologically, DJ34 induced apoptosis, cell cycle arrest, and cell differentiation. Taken together, we have identified a novel compound that dually targets c-Myc and p53 in a wide variety of cancers, and with particularly strong activity against LSCs.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Competition/drug effects , Drug Screening Assays, Antitumor/methods , Proto-Oncogene Proteins c-myc/metabolism , Small Molecule Libraries/pharmacology , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Small Molecule Libraries/chemistry
12.
Haematologica ; Online ahead of print2018 05 10.
Article in English | MEDLINE | ID: mdl-29748445

ABSTRACT

Internal tandem duplications in the tyrosine kinase receptor FLT3 (FLT3-ITD) are among the most common lesions in acute myeloid leukemia and there exists a need for new forms of treatment. Using ex vivo drug sensitivity screening, we found that FLT3-ITD+ patient cells are particularly sensitive to HSP90 inhibitors. While it is well known that HSP90 is important for FLT3-ITD stability, we found that HSP90 family members play a much more complex role in FLT3-ITD signaling than previously appreciated. First, we found that FLT3-ITD activates the unfolded protein response, leading to increased expression of GRP94/HSP90B1. This results in activation of a nefarious feedback loop, in which GRP94 rewires FLT3-ITD signaling by binding and retaining FLT3-ITD in the endoplasmic reticulum, leading to aberrant activation of downstream signaling pathways and further inducing the unfolded protein response. Second, HSP90 family proteins protect FLT3-ITD+ acute myeloid leukemia cells against apoptosis by alleviating proteotoxic stress, and treatment with HSP90 inhibitors results in proteotoxic overload that triggers unfolded protein response-induced apoptosis. Importantly, leukemic stem cells are strongly dependent upon HSP90 for their survival, and the HSP90 inhibitor ganetespib causes leukemic stem cell exhaustion in patient-derived mouse xenograft models. Taken together, our study reveals a molecular basis for HSP90 addiction of FLT3-ITD+ acute myeloid leukemia cells and provides a rationale for including HSP90 inhibitors in the treatment regime for FLT3-ITD+ acute myeloid leukemia.

13.
Article in English | MEDLINE | ID: mdl-28356768

ABSTRACT

BACKGROUND: Approximately 15%-20% of all diagnosed breast cancers are characterized by amplified and overexpressed HER2 (= ErbB2). These breast cancers are aggressive and have a poor prognosis. Although improvements in treatment have been achieved after the introduction of trastuzumab and lapatinib, many patients do not benefit from these drugs. Therefore, in-depth understanding of the mechanisms behind the treatment responses is essential to find alternative therapeutic strategies. MATERIALS AND METHODS: Thirteen HER2 positive breast cancer cell lines were screened with 22 commercially available compounds, mainly targeting proteins in the ErbB2-signaling pathway, and molecular mechanisms related to treatment sensitivity were sought. Cell viability was measured, and treatment responses between the cell lines were compared. To search for response predictors and genomic and transcriptomic profiling, PIK3CA mutations and PTEN status were explored and molecular features associated with drug sensitivity sought. RESULTS: The cell lines were divided into three groups according to the growth-retarding effect induced by trastuzumab and lapatinib. Interestingly, two cell lines insensitive to trastuzumab (KPL4 and SUM190PT) showed sensitivity to an Akt1/2 kinase inhibitor. These cell lines had mutation in PIK3CA and loss of PTEN, suggesting an activated and druggable Akt-signaling pathway. Expression levels of five genes (CDC42, MAPK8, PLCG1, PTK6, and PAK6) were suggested as predictors for the Akt1/2 kinase-inhibitor response. CONCLUSION: Targeting the Akt-signaling pathway shows promise in cell lines that do not respond to trastuzumab. In addition, our results indicate that several molecular features determine the growth-retarding effects induced by the drugs, suggesting that parameters other than HER2 amplification/expression should be included as markers for therapy decisions.

SELECTION OF CITATIONS
SEARCH DETAIL
...