Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(5): e26379, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38449644

ABSTRACT

The discharge of untreated or partially treated wastewater can have detrimental impacts on the quality of water bodies, posing a significant threat to public health and the environment. In Ecuador, previous research indicates a high prevalence of antimicrobial resistant (AMR) bacteria in surface waters affected by human activities, including irrigation channels. In this study, we analyzed sediment samples collected from an irrigation channel utilized for agricultural purposes in northern Ecuador, using microbiological techniques and whole-genome sequencing (WGS). Our investigation revealed the first documented occurrence of E. kobei in Ecuador and the initial report of environmental E. kobei ST2070. Furthermore, we identified the coexistence of OXA-10-type class D ß-lactamase and KPC-2-type class A ß-lactamase in the E. kobei isolate (UTA41), representing the first report of such a phenomenon in this species. Additionally, we detected various antibiotic resistance genes in the E. kobei UTA41 isolate, including blaCTX-M-12, fosA, aac(6')-lb, sul2, msr(E), and mph(A), as well as virulence genes such as bacterial efflux pump and siderophore biosynthesis genes. We also identified two intact prophage regions (Entero_186 and Klebsi_phiKO2) in the isolate. Our study presents the first evidence of E. kobei isolate containing two carbapenemase-encoding genes in environmental samples from Latin America. This finding indicates the potential spread of critical-priority bacteria in water samples originating from anthropogenic sources, such as urban wastewater discharges and livestock facilities.

2.
Sci Total Environ ; 806(Pt 2): 150566, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34582864

ABSTRACT

Although anthropogenic activities contribute to the selection and spread of antibiotic resistance in aquatic environments, limited information is available from countries with absent or incomplete sewage treatment systems and the impact of their discharges onto water bodies. This study therefore aimed to characterize the genetic structure of colistin resistance (mcr) genes among Escherichia coli isolates recovered from surface waters and sediments in Ecuador. Out of 459 isolates, four Escherichia coli showed multidrug-resistant phenotypes, which harbored the mcr-1 gene and ß-lactamases, such as blaTEM, blaCTX-M-15, blaCTX-M-55, or blaCTX-M-65 genes. Three E. coli isolates (U20, U30 and U144) shared a similar genetic environment surrounding the mcr-1 gene, which was located on plasmids. Only one E. coli isolate (U175) showed that the mcr-1 gene was chromosomally located. Moreover, the core genome multilocus sequence typing (cgMLST) analysis revealed that these isolates belong to different lineages. This study represents the first detection of the mcr-1 gene in multidrug-resistant E. coli isolates from environmental samples in Ecuador.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Anti-Bacterial Agents , Ecuador , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Plasmids
SELECTION OF CITATIONS
SEARCH DETAIL