Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Oral Investig ; 28(7): 386, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38890207

ABSTRACT

OBJECTIVE: This study aimed to evaluate the effect of ultrasonic activation of etch-and-rinse and self-etch adhesive systems on the bond strength of resin cement to irradiated root dentin. MATERIALS AND METHODS: Eighty human maxillary anterior teeth were distributed into 8 groups (n = 10), according to the type of adhesive system used (etch-and-rinse and self-etch), the ultrasonic activation of the adhesive systems, and the dentin condition (irradiated or non-irradiated - 70 Gy). Endodontic treatment was performed followed by fiberglass post-space preparation. After fiberglass posts' luting, the roots were transversely sectioned on dentin discs and submitted to the push-out bond strength test (0.5 mm/min). The fractured specimens were analyzed under a stereomicroscope and Scanning Electron Microscope (SEM) for failure mode classification. One of the dentin discs was analyzed under SEM to evaluate the characteristics of the adhesive interface. RESULTS: Irradiated specimens had lower bond strength than non-irradiated specimens (P < 0.0001). Ultrasonic activation of both adhesive systems increased the bond strength of the resin cement to irradiated dentin (P < 0.0001). Radiotherapy significantly affected the failure mode in the middle (P = 0.024) and apical thirds (P = 0.032) (adhesive failure). CONCLUSION: Non-irradiated specimens had a more homogeneous adhesive interface. When ultrasonically activated, both adhesive systems showed a greater number of resinous tags, regardless of the dentin condition. CLINICAL RELEVANCE: Ultrasonic activation of adhesive systems is a feasible strategy to enhance fiberglass posts retention in oncological patients.


Subject(s)
Dental Bonding , Dentin , Materials Testing , Microscopy, Electron, Scanning , Post and Core Technique , Resin Cements , Humans , Resin Cements/chemistry , Dental Bonding/methods , Dentin/radiation effects , In Vitro Techniques , Dentin-Bonding Agents/chemistry , Dental Stress Analysis , Surface Properties , Tooth Root/radiation effects , Ultrasonics , Acid Etching, Dental , Incisor , Glass/chemistry
2.
J Esthet Restor Dent ; 36(6): 941-950, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38475977

ABSTRACT

OBJECTIVES: To investigate the effect of cumulative doses of radiation on the pushout bond strength (BS) of a universal resin cement used in the self-etch (SE) and self-adhesive (SA) modes to the intraradicular dentin. MATERIALS AND METHODS: Forty-eight human teeth were distributed into three groups (n = 16) according to the radiation therapy dose (RT): NoRT (no-radiotherapy), 70RT (70 Gy), and 70 + 70RT (70 Gy + 70 Gy). The teeth were redistributed into two subgroups (n = 8), according to the adhesive mode: SE (NoRT-SE, 70RT-SE, and 70 + 70RT-SE) and SA (NoRT-SA, 70RT-SA, and 70 + 70RT-SA). Data were statistically compared after BS test (ANOVA, Tukey's post hoc test, and Fisher's exact test). RESULTS: In the SA mode, BS was significantly higher in nonirradiated teeth compared with 70RT and 70 + 70RT (p < 0.0001). There were no significant differences between SE and SA modes in nonirradiated teeth (p = 0.14). In the 70RT group, SE mode increased BS compared with SA mode (p < 0.0001). Most specimens had adhesive and mixed failures in SA and SE modes, respectively. CONCLUSIONS: The universal resin cement in the SE mode had greater BS to the irradiated dentin. When teeth were re-irradiated, the universal resin cement had similar performance in terms of BS, regardless of the adhesive approach. CLINICAL SIGNIFICANCE: There is no research establishing a correlation between radiotherapy and its impact on the BS of a universal resin cement used in SE and SA modes to intraradicular dentin.


Subject(s)
Dental Bonding , Resin Cements , Humans , Resin Cements/chemistry , Dental Bonding/methods , Dentin , Dental Stress Analysis , Materials Testing , Dentin-Bonding Agents/chemistry , Acid Etching, Dental
3.
Odontology ; 112(3): 917-928, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38194041

ABSTRACT

To evaluate the effect of ultrasonic activation of the endodontic sealer on its intratubular penetration and bond strength to irradiated root dentin. Forty human teeth were distributed into 4 groups (n = 10), according to the radiation therapy (RT) exposure-70 Gy-and ultrasonic activation (UA) of the endodontic sealer: RT/UA-irradiated teeth and sealer UA; RT/no-UA-irradiated teeth and no sealer UA; no-RT/UA-non-irradiated teeth and sealer UA and no-RT/no-UA-non-irradiated teeth and no sealer UA. Push-out bond strength test was performed in a Universal Testing Machine. Failure modes and adhesive interface were analyzed under Scanning Electron Microscopy. The data were statistically compared (two-way-ANOVA and posthoc Games-Howell test; Fisher's exact test - α = 5%). The different experimental conditions (radiation and UA) and the root third had a significant effect on push-out bond strength, and the interaction of these factors was significant (p < 0.05). UA of the sealer significantly increased its bond strength to both irradiated and non-irradiated dentin (p < 0.05). The irradiated groups mostly presented adhesive-type failure of the sealer (p < 0.01). Regardless of the irradiation, the ultrasonically activated groups showed a more homogeneous adhesive interface, with the presence of sealer tags in greater density and depth. Ultrasonic activation enhanced the intratubular penetration and the bond strength of the endodontic sealer to irradiated dentin. The impact of ultrasonic activation of the endodontic sealer on teeth undergoing radiotherapy is a gap in the scientific literature that needs to be bridged.


Subject(s)
Dental Bonding , Dentin , Materials Testing , Microscopy, Electron, Scanning , Root Canal Filling Materials , Humans , Root Canal Filling Materials/chemistry , Dental Bonding/methods , Dentin/radiation effects , In Vitro Techniques , Dental Stress Analysis , Surface Properties , Ultrasonics , Tooth Root/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL