Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Dermatol ; 33(4): e15072, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576105

ABSTRACT

Autosomal recessive congenital ichthyoses (ARCI) is a genetically heterogeneous condition that can be caused by pathogenic variants in at least 12 genes, including ABCA12. ARCI mainly consists of congenital ichthyosiform erythroderma (CIE), lamellar ichthyosis (LI) and harlequin ichthyosis (HI). The objective was to determine previously unreported pathogenic variants in ABCA12 and to update genotype-phenotype correlations for patients with pathogenic ABCA12 variants. Pathogenic variants in ABCA12 were detected using Sanger sequencing or a combination of Sanger sequencing and whole-exome sequencing. To verify the pathogenicity of a previously unreported large deletion and intron variant, cDNA analysis was performed using total RNA extracted from hair roots. Genetic analyses were performed on the patients with CIE, LI, HI and non-congenital ichthyosis with unusual phenotypes (NIUP), and 11 previously unreported ABCA12 variants were identified. Sequencing of cDNA confirmed the aberrant splicing of the variant ABCA12 in the patients with the previously unreported large deletion and intron variant. Our findings expand the phenotype spectrum of ichthyosis patients with ABCA12 pathogenic variants. The present missense variants in ABCA12 are considered to be heterogenous in pathogenicity, and they lead to varying disease severities in patients with ARCI and non-congenital ichthyosis with unusual phenotypes (NIUP).


Subject(s)
Ichthyosiform Erythroderma, Congenital , Ichthyosis, Lamellar , Ichthyosis , Humans , Ichthyosis, Lamellar/genetics , Ichthyosis, Lamellar/pathology , DNA, Complementary , Genes, Recessive , Mutation , Ichthyosis/genetics , Ichthyosiform Erythroderma, Congenital/genetics , Genetic Association Studies , ATP-Binding Cassette Transporters/genetics
4.
Nagoya J Med Sci ; 83(2): 393-396, 2021 May.
Article in English | MEDLINE | ID: mdl-34239189

ABSTRACT

Basal cell nevus syndrome (BCNS) is an autosomal dominant skin disorder characterized by multiple basal cell nevi. Patients with BCNS tend to develop basal cell carcinoma (BCC) and frequently show skeletal abnormalities. Most cases of BCNS are caused by mutations in patched 1 (PTCH1). PTCH1 encodes a transmembrane receptor protein for the secreted molecule sonic hedgehog, which plays a key role in the development of animals ranging from insects to mammals. We analyzed two Japanese BCNS patients from two independent families. Both of our patients had multiple jaw keratocysts. In one patient, these were the key to noticing his BCNS, as he had no skin tumors. The early detection of PTCH1 mutations would enable BCNS patients to be carefully followed up for the occurrence of BCC. The diagnosis of BCC at the early stage leads to prompt surgical treatments, resulting in a good prognosis. The present cases suggest that keratocysts of the jaw might be an important clue for diagnosing BCNS.


Subject(s)
Basal Cell Nevus Syndrome , Basal Cell Nevus Syndrome/diagnosis , Basal Cell Nevus Syndrome/genetics , Carcinoma, Basal Cell , Hedgehog Proteins , Humans , Male , Odontogenic Cysts/diagnosis , Odontogenic Cysts/genetics , Patched-1 Receptor/genetics
6.
Glia ; 62(9): 1407-17, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24852223

ABSTRACT

Patients with chronic fatigue syndrome (CFS) and fibromyalgia syndrome (FMS) display multiple symptoms, such as chronic widespread pain, fatigue, sleep disturbance, and cognitive dysfunction. Abnormal pain sensation may be the most serious of these symptoms; however, its pathophysiology remains unknown. To provide insights into the molecular basis underlying abnormal pain in CFS and FMS, we used a multiple continuous stress (CS) model in rats, which were housed in a cage with a low level of water (1.5 cm in depth). The von Frey and Randall-Seritto tests were used to evaluate pain levels. Results showed that mechanical allodynia at plantar skin and mechanical hyperalgesia at the anterior tibialis (i.e., muscle pain) were induced by CS loading. Moreover, no signs of inflammation and injury incidents were observed in both the plantar skin and leg muscles. However, microglial accumulation and activation were observed in L4-L6 dorsal horn of CS rats. Quantification analysis revealed a higher accumulation of microglia in the medial part of Layers I-IV of the dorsal horn. To evaluate an implication of microglia in pain, minocycline was intrathecally administrated (via an osmotic pump). Minocycline significantly attenuated CS-induced mechanical hyperalgesia and allodynia. These results indicated that activated microglia were involved in the development of abnormal pain in CS animals, suggesting that the pain observed in CFS and FMS patients may be partly caused by a mechanism in which microglial activation is involved.


Subject(s)
Fatigue Syndrome, Chronic/physiopathology , Hyperalgesia/physiopathology , Microglia/physiology , Muscle, Skeletal/physiopathology , Spinal Cord Dorsal Horn/physiopathology , Animals , Central Nervous System Agents/pharmacology , Disease Models, Animal , Fatigue Syndrome, Chronic/pathology , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Immunohistochemistry , Male , Microglia/drug effects , Minocycline/pharmacology , Muscle, Skeletal/drug effects , Neuroimmunomodulation/drug effects , Neuroimmunomodulation/physiology , Pain Measurement , Random Allocation , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord Dorsal Horn/drug effects , Stress, Psychological , Touch
SELECTION OF CITATIONS
SEARCH DETAIL
...