Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Plant J ; 119(3): 1210-1225, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38843114

ABSTRACT

WHIRLY1 is a chloroplast-nucleus located DNA/RNA-binding protein with functions in development and stress tolerance. By overexpression of HvWHIRLY1 in barley, one line with a 10-fold and two lines with a 50-fold accumulation of the protein were obtained. In these lines, the relative abundance of the nuclear form exceeded that of the chloroplast form. Growth of the plants was shown to be compromised in a WHIRLY1 abundance-dependent manner. Over-accumulation of WHIRLY1 in chloroplasts had neither an evident impact on nucleoid morphology nor on the composition of the photosynthetic apparatus. Nevertheless, oeW1 plants were found to be compromised in the light reactions of photosynthesis as well as in carbon fixation. The reduction in growth and photosynthesis was shown to be accompanied by a decrease in the levels of cytokinins and an increase in the level of jasmonic acid. Gene expression analyses revealed that in nonstress conditions the oeW1 plants had enhanced levels of pathogen response (PR) gene expression indicating activation of constitutive defense. During growth in continuous light of high irradiance PR gene expression increased indicating that under stress conditions oeW1 are capable to further enhance defense.


Subject(s)
Chloroplasts , Gene Expression Regulation, Plant , Hordeum , Plant Proteins , Cell Nucleus/metabolism , Chloroplasts/metabolism , Cyclopentanes/metabolism , Cytokinins/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Hordeum/genetics , Hordeum/metabolism , Hordeum/growth & development , Hordeum/physiology , Light , Oxylipins/metabolism , Photosynthesis , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Stress, Physiological
2.
Curr Biol ; 34(11): 2344-2358.e5, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38781954

ABSTRACT

Inflorescence architecture and crop productivity are often tightly coupled in our major cereal crops. However, the underlying genetic mechanisms controlling cereal inflorescence development remain poorly understood. Here, we identified recessive alleles of barley (Hordeum vulgare L.) HvALOG1 (Arabidopsis thaliana LSH1 and Oryza G1) that produce non-canonical extra spikelets and fused glumes abaxially to the central spikelet from the upper-mid portion until the tip of the inflorescence. Notably, we found that HvALOG1 exhibits a boundary-specific expression pattern that specifically excludes reproductive meristems, implying the involvement of previously proposed localized signaling centers for branch regulation. Importantly, during early spikelet formation, non-cell-autonomous signals associated with HvALOG1 expression may specify spikelet meristem determinacy, while boundary formation of floret organs appears to be coordinated in a cell-autonomous manner. Moreover, barley ALOG family members synergistically modulate inflorescence morphology, with HvALOG1 predominantly governing meristem maintenance and floral organ development. We further propose that spatiotemporal redundancies of expressed HvALOG members specifically in the basal inflorescence may be accountable for proper patterning of spikelet formation in mutant plants. Our research offers new perspectives on regulatory signaling roles of ALOG transcription factors during the development of reproductive meristems in cereal inflorescences.


Subject(s)
Hordeum , Inflorescence , Meristem , Plant Proteins , Signal Transduction , Hordeum/genetics , Hordeum/growth & development , Hordeum/metabolism , Meristem/growth & development , Meristem/genetics , Meristem/metabolism , Inflorescence/growth & development , Inflorescence/genetics , Inflorescence/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
3.
J Exp Bot ; 75(5): 1510-1529, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38014629

ABSTRACT

Extreme weather conditions lead to significant imbalances in crop productivity, which in turn affect food security. Flooding events cause serious problems for many crop species such as wheat. Although metabolic readjustments under flooding are important for plant regeneration, underlying processes remain poorly understood. Here, we investigated the systemic response of wheat to waterlogging using metabolomics and transcriptomics. A 12 d exposure to excess water triggered nutritional imbalances and disruption of metabolite synthesis and translocation, reflected by reductions in plant biomass and growth performance. Metabolic and transcriptomic profiling in roots, xylem sap, and leaves indicated anaerobic fermentation processes as a local response in roots. Differentially expressed genes and ontological categories revealed that carbohydrate metabolism plays an important role in the systemic response. Analysis of the composition of xylem exudates revealed decreased root-to-shoot translocation of nutrients, hormones, and amino acids. Interestingly, among all metabolites measured in xylem exudates, alanine was the most abundant. Immersion of excised leaves derived from waterlogged plants in alanine solution led to increased leaf glucose concentration. Our results suggest an important role of alanine not only as an amino-nitrogen donor but also as a vehicle for carbon skeletons to produce glucose de novo and meet the energy demand during waterlogging.


Subject(s)
Transcriptome , Triticum , Triticum/genetics , Gene Expression Profiling , Glucose/metabolism , Alanine , Plant Roots/metabolism
4.
Plant Cell ; 35(11): 3973-4001, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37282730

ABSTRACT

Leaf and floral tissue degeneration is a common feature in plants. In cereal crops such as barley (Hordeum vulgare L.), pre-anthesis tip degeneration (PTD) starts with growth arrest of the inflorescence meristem dome, which is followed basipetally by the degeneration of floral primordia and the central axis. Due to its quantitative nature and environmental sensitivity, inflorescence PTD constitutes a complex, multilayered trait affecting final grain number. This trait appears to be highly predictable and heritable under standardized growth conditions, consistent with a developmentally programmed mechanism. To elucidate the molecular underpinnings of inflorescence PTD, we combined metabolomic, transcriptomic, and genetic approaches to show that barley inflorescence PTD is accompanied by sugar depletion, amino acid degradation, and abscisic acid responses involving transcriptional regulators of senescence, defense, and light signaling. Based on transcriptome analyses, we identified GRASSY TILLERS1 (HvGT1), encoding an HD-ZIP transcription factor, as an important modulator of inflorescence PTD. A gene-edited knockout mutant of HvGT1 delayed PTD and increased differentiated apical spikelets and final spikelet number, suggesting a possible strategy to increase grain number in cereals. We propose a molecular framework that leads to barley PTD, the manipulation of which may increase yield potential in barley and other related cereals.


Subject(s)
Hordeum , Inflorescence , Hordeum/genetics , Hordeum/metabolism , Plant Leaves/metabolism , Meristem/genetics , Gene Expression Profiling , Edible Grain/genetics , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Plant Sci ; 315: 111123, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35067296

ABSTRACT

Biofortification, the enrichment of nutrients in crop plants, is of increasing importance to improve human health. The wild barley nested association mapping (NAM) population HEB-25 was developed to improve agronomic traits including nutrient concentration. Here, we evaluated the potential of high-throughput hyperspectral imaging in HEB-25 to predict leaf concentration of 15 mineral nutrients, sampled from two field experiments and four developmental stages. Particularly accurate predictions were obtained by partial least squares regression (PLS) modeling of leaf concentrations for N, P and K reaching coefficients of determination of 0.90, 0.75 and 0.89, respectively. We recognized nutrient-specific patterns of variation of leaf nutrient concentration between developmental stages. A number of quantitative trait loci (QTL) associated with the simultaneous expression of leaf nutrients were detected, indicating their potential co-regulation in barley. For example, the wild barley allele of QTL-4H-1 simultaneously increased leaf concentration of N, P, K and Cu. Similar effects of the same QTL were previously reported for nutrient concentrations in grains, supporting a potential parallel regulation of N, P, K and Cu in leaves and grains of HEB-25. Our study provides a new approach for nutrient assessment in large-scale field experiments to ultimately select genes and genotypes supporting plant biofortification.


Subject(s)
Biofortification , Hordeum/genetics , Hordeum/metabolism , Hyperspectral Imaging/methods , Plant Leaves/chemistry , Plant Leaves/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Forecasting , Genetic Variation , Genome-Wide Association Study , Genotype , Germany , Machine Learning , Phenotype
6.
Plant Biotechnol J ; 19(12): 2646-2661, 2021 12.
Article in English | MEDLINE | ID: mdl-34449959

ABSTRACT

The development of crop varieties that are resistant to lodging is a top priority for breeding programmes. Herein, we characterize the rye mutant ´Stabilstroh' ('stable straw') possessing an exceptional combination of high lodging resistance, tall posture and high biomass production. Nuclear magnetic resonance imaging displayed the 3-dimensional assembly of vascular bundles in stem. A higher number of vascular bundles and a higher degree of their incline were the features of lodging-resistant versus lodging-prone lines. Histology and electron microscopy revealed that stems are fortified by a higher proportion of sclerenchyma and thickened cell walls, as well as some epidermal invaginations. Biochemical analysis using Fourier-transform infrared spectroscopy and inductively coupled plasma-optical emission spectrometry further identified elevated levels of lignin, xylan, zinc and silicon as features associated with high lodging resistance. Combined effects of above features caused superior culm stability. A simplistic mathematical model showed how mechanical forces distribute within the stem under stress. Main traits of the lodging-resistant parental line were heritable and could be traced back to the genetic structure of the mutant. Evaluation of lodging-resistant wheat 'Babax' ('Baviacora') versus contrasting, lodging-prone, genotype ´Pastor´ agreed with above findings on rye. Our findings on mechanical stability and extraordinary culm properties may be important for breeders for the improvement of lodging resistance of tall posture cereal crops.


Subject(s)
Secale , Triticum , Edible Grain/metabolism , Lignin/metabolism , Plant Breeding/methods , Secale/genetics , Secale/metabolism , Triticum/metabolism
7.
Int J Mol Sci ; 21(23)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260985

ABSTRACT

The adaptation strategies of halophytic seaside barley Hordeum marinum to high salinity and osmotic stress were investigated by nuclear magnetic resonance imaging, as well as ionomic, metabolomic, and transcriptomic approaches. When compared with cultivated barley, seaside barley exhibited a better plant growth rate, higher relative plant water content, lower osmotic pressure, and sustained photosynthetic activity under high salinity, but not under osmotic stress. As seaside barley is capable of controlling Na+ and Cl- concentrations in leaves at high salinity, the roots appear to play the central role in salinity adaptation, ensured by the development of thinner and likely lignified roots, as well as fine-tuning of membrane transport for effective management of restriction of ion entry and sequestration, accumulation of osmolytes, and minimization of energy costs. By contrast, more resources and energy are required to overcome the consequences of osmotic stress, particularly the severity of reactive oxygen species production and nutritional disbalance which affect plant growth. Our results have identified specific mechanisms for adaptation to salinity in seaside barley which differ from those activated in response to osmotic stress. Increased knowledge around salt tolerance in halophytic wild relatives will provide a basis for improved breeding of salt-tolerant crops.


Subject(s)
Adaptation, Physiological , Hordeum/physiology , Osmotic Pressure , Salinity , Salt-Tolerant Plants/physiology , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Amino Acids/metabolism , Antioxidants/metabolism , Carbon Isotopes , Gene Expression Regulation, Plant/drug effects , Gene Ontology , Hordeum/drug effects , Hordeum/genetics , Hordeum/growth & development , Magnetic Resonance Spectroscopy , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Metabolomics , Minerals/metabolism , Photosynthesis/drug effects , Photosynthesis/genetics , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Salt-Tolerant Plants/drug effects , Salt-Tolerant Plants/genetics , Secondary Metabolism/drug effects , Secondary Metabolism/genetics , Stress, Physiological/drug effects , Stress, Physiological/genetics , Sugars/metabolism , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL