Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Talanta ; 270: 125558, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38183713

ABSTRACT

Deep eutectic solvents (DES), regarded as promising green solvents, have gained attention due to their distinctive properties, particularly in analytical chemistry. While the use of DES in solvent extraction and separation has been extensively studied, its application in the synthesis of adsorbents has just begun. Phenolic resin, with its polyhydroxy structure and stable spherical morphology, could serve as an effective as adsorbents for enrichment of active ingredients in herbal medicine. Designing adsorbents with high selectivity and adsorption capacity presents a critical challenge in the enrichment of active ingredients in herbal medicine. In this study, alcohol-based DESs were employed as regulators of morphology and structure instead of organic solvents, facilitating the creation of polyhydroxy structure, adjustable pores and high specific surface areas. The resulting DES-regulated porous phenolic resin demonstrated enhanced extraction and separation capacity for active ingredients compared to conventional spherical phenolic resin owing to the alcohol-based DES offering more interaction modes with the analytes.


Subject(s)
Abietanes , Formaldehyde , Phenols , Polymers , Salvia miltiorrhiza , Solvents/chemistry , Salvia miltiorrhiza/chemistry , Deep Eutectic Solvents , Porosity , Plant Extracts/chemistry , Ethanol
2.
Phytomedicine ; 123: 155185, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38134863

ABSTRACT

BACKGROUND: Elemene, an active anticancer extract derived from Curcuma wenyujin, has well-documented anticarcinogenic properties. Nevertheless, the role of elemene in prostate cancer (PCa) and its underlying molecular mechanism remain elusive. PURPOSE: This study focuses on investigating the anti-PCa effects of elemene and its underlying mechanisms. METHODS: Cell-based assays, including CCK-8, scratch, colony formation, cell cycle, and apoptosis experiments, to comprehensively assess the impact of elemene on PCa cells (LNCaP and PC3) in vitro. Additionally, we used a xenograft model with PC3 cells in nude mice to evaluate elemene in vivo efficacy. Targeted metabolomics analysis via HILIC-MS/MS was performed to investigate elemene potential target pathways, validated through molecular biology experiments, including western blotting and gene manipulation studies. RESULTS: In this study, we discovered that elemene has remarkable anti-PCa activity in both in vitro and in vivo settings, comparable to clinical chemotherapeutic drugs but with fewer side effects. Using our established targeted metabolomics approach, we demonstrated that ß-elemene, elemene's primary component, effectively inhibits glycolysis in PCa cells by downregulating 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) expression. Furthermore, we found that ß-elemene accomplishes this downregulation by upregulating p53 and FZR1. Knockdown and overexpression experiments conclusively confirmed the pivotal role of PFKFB3 in mediating ß-elemene's anti-PCa activity. CONCLUSION: This finding presents compelling evidence that elemene exerts its anti-PCa effect by suppressing glycolysis through the downregulation of PFKFB3. This study not only improves our understanding of elemene in PCa treatment but also provides valuable insights for developing more effective and safer therapies for PCa.


Subject(s)
Prostatic Neoplasms , Sesquiterpenes , Tandem Mass Spectrometry , Male , Animals , Mice , Humans , Mice, Nude , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Glycolysis , Cell Proliferation , Phosphofructokinase-2/genetics , Phosphofructokinase-2/pharmacology
3.
Nanoscale ; 15(32): 13280-13288, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37545477

ABSTRACT

Carbon nanotubes (CNTs) have been widely used as electrode materials for electrochemical energy storage devices (e.g., supercapacitors) due to their excellent chemical and physical properties. However, conventional approaches (e.g., electron-beam vapor deposition and atomic layer deposition) to fabricate catalysts for the growth of CNTs are complex and demand high energy consumption. Herein, we report a facile method to synthesize catalysts derived from cobalt-containing zeolitic imidazolate frameworks (Co-ZIFs), which is exploited to in situ construct the three-dimensional (3D) CNT hybrid materials for all-solid-state supercapacitors. In brief, Co-ZIFs with a controllable structure is first grown on the inner porous surface of carbon foams pyrolyzed from commercial melamine foams, followed by thermal annealing and chemical vapor deposition to grow CNTs, achieving 3D free-standing CNT-based hybrids. The well-distributed Co-ZIFs in the carbon foam enable the grown CNTs with uniform structures and morphologies. Using the fabricated CNT-based hybrid as electrodes, the assembled all-solid-state supercapacitors show a high specific capacitance of 19.4 mF cm-2 at a current density of 0.5 mA cm-2, which could be further optimized to as high as 871.8 mF cm-2 by incorporating the pseudocapacitive material of manganese dioxide in CNT-based hybrids. This study provides a facile solution approach to fabricate the catalyst for the growth of a CNT inner porous substrate; the resultant 3D free-standing hybrids could be used as efficient electrodes for high-performance energy storage devices beyond supercapacitors.

4.
J Chromatogr A ; 1706: 464236, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37506465

ABSTRACT

Understanding the metabolic abnormalities of tumors is crucial for early diagnosis, prognosis, and treatment. Accurate identification and quantification of metabolites in biological samples are essential to investigate the relationship between metabolite variations and tumor development. Common techniques like LC-MS and GC-MS face challenges in measuring aberrant metabolites in tumors due to their strong polarity, isomerism, or low ionization efficiency during MS detection. Chemical derivatization of metabolites offers an effective solution to overcome these challenges. This review focuses on the difficulties encountered in analyzing aberrant metabolites in tumors, the principles behind chemical derivatization methods, and the advancements in analyzing tumor metabolites using derivatization-based chromatography. It serves as a comprehensive reference for understanding the analysis and detection of tumor metabolites, particularly those that are highly polar and exhibit low ionization efficiency.


Subject(s)
Neoplasms , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/methods , Chromatography, Liquid/methods , Isomerism , Neoplasms/diagnosis
5.
Mater Horiz ; 10(7): 2618-2626, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37185996

ABSTRACT

Flexible supercapacitors with high power density and long cyclic stability represent a promising candidate to be used as power supplies for portable electronics, but often suffer from the disadvantages of a limited working voltage and rapid self-discharge (spontaneous drop of open-circuit voltage). Here, we design a bilayer heterogeneous poly(ionic liquid) electrolyte (BHPE) consisting of a polycation complex and a polyanion complex with different zeta potentials to suppress the self-discharge of flexible symmetric supercapacitors. The resultant BHPE-based supercapacitors using active carbon/carbon nanotube composite electrodes exhibit a high working potential of 3.0 V and an energy density of 33 W h kg-1, which are comparable with those of devices obtained by using a homogeneous poly(ionic liquid) electrolyte (HPE). More significantly, the developed BHPE-based supercapacitor charged under forward bias exhibits a self-discharge time of 23.2 h, which is at least twice that of the device charged under reverse bias and is also much superior to those of HPE-based supercapacitors. The BHPE-based supercapacitors also possess excellent mechanical flexibility and stability, due to the stabilized interface contact between two layers of poly(ionic liquid)s.

6.
J Ethnopharmacol ; 311: 116409, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37003401

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Curcuma wenyujin Y.H. Chen & C. Ling, also known as Wen-E-Zhu, has been used for cancer treatment since ancient times, with roots dating back to the Song Dynasty. Elemene (EE), a sesquiterpene extract with potent anticancer properties, is extracted from Wen-E-Zhu, with ß-elemene (BE) being its main active compound, along with trace amounts of ß-caryophyllene (BC), γ-elemene and δ-elemene isomers. EE has demonstrated broad-spectrum anti-cancer effects and is commonly used in clinical treatments for various types of malignant cancers, including lung cancer. Studies have shown that EE can arrest the cell cycle, inhibit cancer cell proliferation, and induce apoptosis and autophagy. However, the exact mechanism of its anti-lung cancer activity remains unclear and requires further research and investigation. AIM OF THE STUDY: In this study, the possible mechanism of EE and its main active components, BE and BC, against lung adenocarcinoma was investigated by using A549 and PC9 cell lines. MATERIALS AND METHODS: The subcutaneous tumor model of nude mice was constructed to evaluate the efficacy of EE in vivo, then the in vitro half-inhibitory concentration (IC50) of EE and its main active components, BE and BC, on A549 and PC9 cells at different concentrations were determined by CCK-8. Flow cytometry was used to detect the apoptosis and cycle of A549 and PC9 cells treated with different concentrations of BE and BC for 24 h. Non-targeted metabolomics analysis was performed on A549 cells to explore potential target pathways, which were subsequently verified through kit detection and western blot analysis. RESULTS: Injection of EE in A549 tumor-bearing mice effectively suppressed cancer growth in vivo. The IC50 of EE and its main active components, BE and BC, was around 60 µg/mL. Flow cytometry analysis showed that BE and BC blocked the G2/M and S phases of lung adenocarcinoma cells and induced apoptosis, leading to a significant reduction in mitochondrial membrane potential (MMP). Results from non-targeted metabolomics analysis indicated that the glutathione metabolism pathway in A549 cells was altered after treatment with the active components. Kit detection revealed a decrease in glutathione (GSH) levels and an increase in the levels of oxidized glutathione (GSSG) and reactive oxygen (ROS). Supplementation of GSH reduced the inhibitory activity of the active components on lung cancer and also decreased the ROS content of cells. Analysis of glutathione synthesis-related proteins showed a decrease in the expression of glutaminase, cystine/glutamate reverse transporter (SLC7A11), and glutathione synthase (GS), while the expression of glutamate cysteine ligase modified subunit (GCLM) was increased. In the apoptosis-related pathway, Bax protein and cleaved caspase-9/caspase-9 ratio were up-regulated and Bcl-2 protein was down-regulated. CONCLUSIONS: EE, BE, and BC showed significant inhibitory effects on the growth of lung adenocarcinoma cells, and the mechanism of action was linked to the glutathione system. By down-regulating the expression of proteins related to GSH synthesis, EE and its main active components BE and BC disrupted the cellular redox system and thereby promoted cell apoptosis.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Sesquiterpenes , Animals , Mice , Caspase 9/metabolism , Reactive Oxygen Species/metabolism , Mice, Nude , Adenocarcinoma of Lung/drug therapy , Lung Neoplasms/pathology , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Apoptosis , Glutathione/metabolism , Cell Proliferation , Cell Line, Tumor
7.
Mikrochim Acta ; 190(3): 84, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36749401

ABSTRACT

A novel chiral porous column was fabricated by lipase immobilized MIL-100(Fe) biocomposites as chiral stationary phase through covalent coupling and applied to capillary electrochromatographic enantioseparation. MOF-based lipase biocomposites not only enhance stereoselective activities but also improve the stability and applicability of the enzyme. The functionalized porous columns were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and powder X-ray diffraction. The performance of the porous column was evaluated by enantioseparating amino acid enantiomers, affording high resolution over 2.0. Besides, the enantio-resolutions of phenylephrine, phenylsuccinic acid, chloroquine, and zopiclone were also greater than 2.0. The relative standard deviations of run-to-run, intra-, and inter-day repeatability were within 4.0% in terms of resolution and retention time, exhibiting excellent stability of the column. Conceivably, the results show that MOF-based lipase composites as chiral stationary phase offer a highly efficient means for enantioseparation in capillary electrochromatography, attributing to the enhanced enantioselective activities of lipase by highly ordered frameworks.


Subject(s)
Capillary Electrochromatography , Capillary Electrochromatography/methods , Lipase , Microscopy, Electron, Scanning , Chloroquine , Stereoisomerism
8.
J Chromatogr A ; 1685: 463600, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36334561

ABSTRACT

In this work, magnetic nitrogen-doped porous carbon (Fe3O4@N-PC) was prepared via incomplete combustion coupled with solvothermal synthesis for extraction of four benzoylureas (BUs) insecticides. Among them, nitrogen-doped porous carbon was produced through incomplete combustion of filter paper loaded with mixture formed by Zn(NO3)2·6H2O and polyethyleneimine solution, and magnetic nanoparticles were further introduced by solvothermal method. Compared with magnetic porous carbon (Fe3O4@PC), the surface hydrophilicity of Fe3O4@N-PC was improved by virtue of the doping of nitrogen atoms, and the dispersion of Fe3O4 was more uniform, which greatly exposed the adsorption site. The characterization of Fe3O4@N-PC were carried out by TEM, XRD, elemental analysis, XPS, BET and magnetic hysteresis curve. Besides, Fe3O4@N-PC was successfully used as magnetic solid-phase extraction (MSPE) adsorbent, which showed excellent enrichment factors and extraction recoveries toward polar BUs insecticides due to the polar surface and introduction of Lewis-basic nitrogen. The optimum amount of Fe3O4@N-PC adsorbent, extraction time, pH value, desorption solvent, desorption time and PEI concentration for BUs insecticides extraction were determined to be 3 mg, 10 min, 8, acetone/acetic acid (19:1, V/V), 6 min and 60 g L-1, respectively. Under this experimental condition, the enrichment factors ranged from 182 to 192 with good intra- and inter-day relative standard deviations (RSDs). The calibration lines were linear over the concentration in the range of 1-800 µg L-1, the limit of detection (LOD) and limit of quantification (LOQ) were 0.3 µg L-1 as well as 1 µg L-1, respectively. The recoveries for spiked sample ranged from 90.7 to 107.3% in spiked Yellow River water with the RSDs less than 7.0%. The results showed that the established MSPE strategy based on Fe3O4@N-PC could be used for the detection of trace BUs in complex samples.


Subject(s)
Insecticides , Insecticides/analysis , Carbon/chemistry , Water/chemistry , Porosity , Nitrogen , Solid Phase Extraction/methods , Limit of Detection , Magnetic Phenomena , Chromatography, High Pressure Liquid
9.
Anal Chem ; 94(15): 5838-5845, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35385254

ABSTRACT

The extremely low abundance of circulating tumor DNA in blood samples has limited the development of liquid biopsy techniques for the early diagnosis of major diseases. In this study, we demonstrate a DRN-based screening technique, SCREEN, which achieves the specific capture and enrichment of low abundance SNV nucleic acid samples without selective amplification. The SCREEN technique achieved a 108-fold increase in the abundance of single-nucleotide variant (SNV) nucleic acids from highly homologous mixtures (from 0.01% to 1.08%) and has been shown to significantly increase the abundance of SNV nucleic acids from 0.1% to 51% further through two rounds of capture. As a highly effective pre-enrichment technique, SCREEN has demonstrated the ability to enhance NGS in detecting an ultralow abundance SNV nucleic acid powerfully and has high compatibility with existing molecular diagnostic methods.


Subject(s)
DNA , Nucleic Acids , DNA/genetics , Molecular Diagnostic Techniques/methods , Nucleotides , Technology
10.
J Chromatogr A ; 1666: 462856, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35123168

ABSTRACT

Biphasic chiral recognition was first applied for the enantioseparation acidic drugs in capillary electrochromatography. The biphasic recognition system was composed of mobile phase additive (ß-cyclodextrin) and monolithic chiral stationary phase (proteins). The pretreated silica-fused capillary was treated with 3-trimethoxysilyl propyl methacrylate to attach double bond ligand onto the surface. The mixed monolithic chiral stationary phase was constructed with bovine serum albumin and pepsin using one-pot polymerization by chemical covalent coupling, while dimethyl sulfoxide and methanol were used as the progenic solvents. The effects of the type and concentration of ß-cyclodextrin additive as well as pH value of the mobile phase on the separation efficiency were optimized. The performance of the biphasic recognition system was validated by separating acidic drugs (such as ketoprofen, ibuprofen, loxoprofen, flurbiprofen and carprofen) in capillary electrochromatography, achieving outstanding separation efficiency. In terms of migration time and resolution, the run-to-run, intra-day, and inter-day repeatability through relative standards deviation were within 5.0%, exhibiting excellent stability of the biphasic recognition system. Conceivably, the experimental result reveals that biphasic chiral recognition capillary electrochromatography offers a promising prospect for enantioseparation of chiral compounds in a highly efficient manner.


Subject(s)
Capillary Electrochromatography , Capillary Electrochromatography/methods , Ibuprofen , Serum Albumin, Bovine , Silicon Dioxide/chemistry , Stereoisomerism
11.
Talanta ; 241: 123221, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35063877

ABSTRACT

Nanozymes with multiple activities have drawn immense interest owing to their great prospect in biochemical analysis. Fabricating nanomaterials-based artificial enzymes for multiple-enzyme mimetic activity is a significant challenge. This paper reports a sensitive biosensing platform to mimic the peroxidase, oxidase, and catalase-like activity by bimetallic CuPd embedded holey carbon nitride (CuPd@H-C3N4). Owing to the combination of porous H-C3N4 and bimetallic CuPd nanoparticles, the CuPd@H-C3N4 exhibited a large specific surface area, extremely high mobility and catalytic activity of electrons, resulting in remarkable triple-enzyme mimetic activity. Owing to the excellent oxidase/peroxidase-like activities of CuPd@H-C3N4, a visual colorimetric and ultrasensitive fluorometric biosensing platform was established for the discriminatory detection of glutathione (linear range: 2-40 µM) and glucose (linear range: 0.1-40 µM) in physiological fluids, respectively. The fluorescence detection system showed ultrahigh sensitivity toward H2O2, with a linear range of 30-1500 nM. In addition, a one-step glucose detection strategy was proposed to replace the traditional, complicated two-step detection method, which simplifies the operation steps and improves the detection efficiency. The assay presented in this paper offers an effective multiple-enzymes mimicking detection platform that broaden its promising applications in biomedicine analysis and monitoring.


Subject(s)
Biosensing Techniques , Colorimetry , Colorimetry/methods , Fluorometry , Glucose/analysis , Glutathione , Hydrogen Peroxide , Peroxidase
12.
Electrophoresis ; 42(20): 2087-2093, 2021 10.
Article in English | MEDLINE | ID: mdl-34411326

ABSTRACT

Open tubular CEC (OT-CEC) column with a very high separation efficiency was prepared for peptides separation. A pretreated silica-fused capillary was reacted with 3-(methacryloxy) propyltrimethoxysilane followed by vinylbenzyl chloride and divinylbenzene to produce first thin monolithic monolayer. The second copolymer layer was formed on thin monolithic monolayer of the capillary by reversible addition-fragmentation transfer polymerization of N-phenylacrylamide and styrene. The key parameters including buffer pH value and organic modifier were systematically evaluated to provide the optimal chromatographic condition. The resultant OT-CEC columns were validated by separating a synthetic mixture of peptides and cytochrome C tryptic digest in capillary electrochromatography. The number of theoretical plates as high as 2.4 million per column was achieved for synthetic mixture peptides. In addition, the fabricated OT-CEC column also resolved more than 18 high-efficiency digestion peptides from a mixture containing tryptic digest of cytochrome C. The column to column and inter- to intraday repeatabilities of OT-CEC column through RSD% were found better than 3.0%, exhibiting satisfactory stability and repeatability of the two-layer deposited OT-CEC column. The results reveal that the open tubular capillary column modified with two-layer copolymer shows the great prospect for the separation of proteins in capillary electrochromatography.


Subject(s)
Capillary Electrochromatography , Peptides , Cytochromes c , Peptides/isolation & purification , Polymers , Proteins
13.
Anal Chim Acta ; 1145: 3-8, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33453878

ABSTRACT

Single-nucleotide variants (SNV) detection with high abundance sensitivity is of great significance in clinical application, molecular diagnostics and biological research. In this study, a high abundance sensitivity SNV detection strategy based on entropy-driven catalytic (EDC) amplification adjusted by stoichiometry is proposed. In EDC, the toehold exchange reaction is used to initiate subsequent catalytic reaction and can be adjusted by stoichiometry. When the by-product concentration in the toehold exchange reaction is excessive, the forward reaction will be inhibited, which can reduce or even block the unexpected reaction between the non-target and the probe. Meanwhile, some targets can still successfully take a toehold exchange reaction with the probe, thus completing the subsequent EDC. By adjusting the EDC, the SNV identification specificity of this system was improved and is superior to any single adjusted stoichiometry or EDC. When the low abundance target is detected from the mixture, this strategy enables SNV detection at 0.1% abundance with high abundance sensitivity. And even if the mixture contains three kind of 1000-fold interference sequences, this strategy can still discriminate the target SNV. Furthermore, the practical applicability of the adjusted EDC system was verified by p53 mutation discrimination in human urine.


Subject(s)
DNA , Polymorphism, Single Nucleotide , Entropy , Humans , Nucleotides
14.
Chemistry ; 26(69): 16256-16260, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-32964533

ABSTRACT

Identification of single-nucleotide variants (SNVs) is of great significance in molecular diagnosis. The problem that should not be ignored in the identification process is that the unexpected secondary structure of the target nucleic acid may greatly affect the detection accuracy. Herein, we proposed a conditional domain-level SNV diagnosis strategy, in which the subsequent SNV detection can only be carried out after eliminating the unexpected secondary structure of target DNA. Specifically, the target DNA is assembled into a rigid double strand, which makes folding the target DNA difficult and the unexpected secondary structure is eliminated. Based on this double-stranded structure, specially designed probes are used to detect double-stranded properties and report abundant domain-level oligonucleotide information to improve the effective information in the detection results and complete domain-level SNV diagnosis. If the unexpected secondary structure is not eliminated, the detector will first detect it and feed back to us, ensuring the accuracy of the subsequent detection results. With the occurrence (or not) of SNV and the change of the SNV site, in the proof-of-concept experiment, we successfully identified the four homologous sequences to be tested related to BRAF gene.

15.
Top Curr Chem (Cham) ; 378(1): 10, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31894426

ABSTRACT

Single-nucleotide variants (SNVs) that are strongly associated with many genetic diseases and tumors are important both biologically and clinically. Detection of SNVs holds great potential for disease diagnosis and prognosis. Recent advances in DNA nanotechnology have offered numerous principles and strategies amenable to the detection and quantification of SNVs with high sensitivity, specificity, and programmability. In this review, we will focus our discussion on emerging techniques making use of DNA strand displacement, a basic building block in dynamic DNA nanotechnology. Based on their operation principles, we classify current SNV detection methods into three main categories, including strategies using toehold-mediated strand displacement reactions, toehold-exchange reactions, and enzyme-mediated strand displacement reactions. These detection methods discriminate SNVs from their wild-type counterparts through subtle differences in thermodynamics, kinetics, or response to enzymatic manipulation. The remarkable programmability of dynamic DNA nanotechnology also allows the predictable design and flexible operation of diverse strand displacement probes and/or primers. Here, we offer a systematic survey of current strategies, with an emphasis on the molecular mechanisms and their applicability to in vitro diagnostics.


Subject(s)
DNA/chemistry , DNA/genetics , Genetic Variation , Nucleotides/genetics , Humans , Nanotechnology , Nucleic Acid Hybridization , Nucleic Acid Probes/genetics , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction
16.
Bioresour Technol ; 296: 122309, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31677409

ABSTRACT

The utilization of microalgae as bioenergy source was limited by the excessive cost and energy consumption during the process of lipid extraction and separation. CO2-induced switchable ionic liquids (S-ILs) with reversible hydrophobic-hydrophilic conversion were synthesized and applied for lipid extraction and separation. The reversible transition mechanism of switchable IL is due to the formation of carbamate. The novel approach based on S-ILs was developed for lipid extraction from wet microalgae, which coupled microalgae cell disruption, lipid extraction, separation, and solvent recovery process without additional solvents. The highest lipid extraction efficiencies from wet microalgae were obtained by C6DIPA-Im, and the lipids were recovered from the extraction phase by simply bubbling CO2. Furthermore, C6DIPA-Im maintained more than 83.6 ±â€¯3.6% of its initial lipid extraction efficiency after recycling five times. The S-IL based extraction and separation method provides a new strategy for sustainable bioenergy production.


Subject(s)
Ionic Liquids , Microalgae , Azoles , Carbon Dioxide , Lipids , Solvents
17.
Polymers (Basel) ; 11(5)2019 May 13.
Article in English | MEDLINE | ID: mdl-31086066

ABSTRACT

A novel water-compatible molecularly imprinted resin was prepared in a green solvent deep eutectic solvent (DES). Resorcinol and melamine, as functional monomers with an abundant hydrophilic group, such as -OH, -NH2 and -NH-, were introduced into the molecularly imprinted resin (MIR). Three DESs (choline chloride-ethylene glycol, tetramethylammonium bromide-ethylene glycol and tetramethylammonium chloride-ethylene glycol) were used to synthesize the molecularly imprinted resin and the resulting deep eutectic solvent-based molecularly imprinted resins were characterized by particle size analysis, elemental analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. The resulting deep eutectic solvent-based molecularly imprinted resins were then applied to the adsorption of quinolones (ofloxacin) in water. The adsorption process of deep eutectic solvent-based molecularly imprinted resin followed the static adsorption model, Langmuir isotherm (R2 ≥ 0.9618) and kinetic model pseudo-second-order (R2 > 0.9814). The highest theory adsorption ability of the three kinds of deep eutectic solvent-based molecularly imprinted resins was more than 23.79 mg/g. The choline chloride-ethylene glycol-based MIR was applied to solid-phase extraction for the determination and purification of quinolones (e.g., ciprofloxacin and ofloxacin). The detection limit of deep eutectic solvent-based molecularly imprinted resin-solid-phase extraction method was less than 0.018 mg/L. The recoveries of the deep eutectic solvent-based molecularly imprinted resin-solid-phase extraction method at three spiked levels were 88.7-94.5%, with a relative standard deviation of ≤4.8%. The novel deep eutectic solvent-based molecularly imprinted resin-solid-phase extraction method is a simple, selective and accurate pre-treatment method and can be used to determine the quinolones in environmental water.

18.
Chem Commun (Camb) ; 55(45): 6381-6384, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31089654

ABSTRACT

Herein, we propose the state and activation mechanisms able to realize the unification of an input signal and addressable sequential execution. Furthermore, a DNA sequential logic circuit (SLC) model was designed and applied in constructing a DNA register that for the first time realizes the generalized storage of identical input molecules.


Subject(s)
Computers, Molecular , DNA/chemistry , Models, Chemical , Fluorescence , Kinetics
19.
Chem Commun (Camb) ; 55(6): 842-845, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30575824

ABSTRACT

We present the application of redundant modules in the molecular cascade circuit, which can help trace the results of each logic gate. This provides a basis for finding the error position and judging the final circuit result to improve the circuit and the reliability of the system.


Subject(s)
DNA/chemistry , Fuzzy Logic
20.
Anal Bioanal Chem ; 410(28): 7325-7336, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30232523

ABSTRACT

Fatty acid/alcohol-based hydrophobic deep eutectic solvents (DESs) have been considered to be eco-friendly alternatives to replace conventional hydrophobic organic solvents (i.e., halogenated solvents). These novel eco-friendly solvents are applied in the extraction and determination of two antibiotics (levofloxacin, LOF; ciprofloxacin, COF) in environmental water by liquid-liquid microextraction (LLME). Two different families of hydrophobic DESs, one based on fatty acids and the other on fatty alcohols, were prepared and applied as a microextraction solvent. The study results showed that 1-octanol/ tricaprylylmethylammonium chloride-based DES (DES-14) had the best extraction efficiency. The vortex-assisted method exhibited better extraction efficiency than the heating, ultrasound, and microwave auxiliary methods in LLME. The main factors affecting the vortex-assisted LLME were optimized statistically using the Box-Behnken design (BBD) combined with response surface methodology (RSM). The optimal conditions for LOF and COF were as follows: 14:174 µL DES, 5.7 min vortex-assisted time, and 8.7% NaCl, w/v. Under these conditions, hydrophobic DES-based LLME was established for extraction and determination LOF and COF from environmental water, and the extraction recoveries of LOF and COF exceeded 94.8%. The proposed hydrophobic DES-based LLME method provides high precision, good linearity, acceptable limit of detection (LOD) and limit of quantification (LOQ), and satisfactory recoveries for the targets. These results support the potential of this method as a new type of extraction medium to replace conventional hydrophobic organic solvents in various applications.


Subject(s)
Anti-Bacterial Agents/chemistry , Fatty Acids/chemistry , Fatty Alcohols/chemistry , Hydrophobic and Hydrophilic Interactions , Solvents/chemistry , Ultrasonics , Water , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL