Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
J Phys Chem Lett ; : 7036-7044, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949737

ABSTRACT

Fast-decaying scintillators show subnanoseconds or nanoseconds lifetime and high time resolution, making them important in nuclear physics, medical diagnostics, scientific research, and other fields. Metal halide perovskites (MHPs) show great potential for scintillator applications owing to their easy synthesis procedure and attractive optical properties. However, MHPs scintillators still need further improvement in decay lifetime. To optimize the decay lifetime, great progress has been achieved recently. In this Perspective, we first summarize the structural characteristics of MHPs in various dimensions, which brings different exciton behaviors. Then, recent advances in designing fast-decaying MHPs according to different exciton behaviors have been concluded, focusing on the photophysical mechanisms to achieve fast-decaying lifetimes. These advancements in decay lifetimes could facilitate the MHPs scintillators in advanced applications, such as time-of-flight positron emission tomography (TOF-PET), photon-counting computed tomography (PCCT), etc. Finally, the challenges and future opportunities are discussed to provide a roadmap for designing novel fast-decaying MHPs scintillators.

2.
Mol Cancer ; 23(1): 132, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926757

ABSTRACT

BACKGROUND: TFE3-rearranged renal cell carcinoma (TFE3-rRCC) is a rare but highly heterogeneous renal cell carcinoma (RCC) entity, of which the clinical treatment landscape is largely undefined. This study aims to evaluate and compare the efficacy of different systemic treatments and further explore the molecular correlates. METHODS: Thirty-eight patients with metastatic TFE3-rRCC were enrolled. Main outcomes included progression-free survival (PFS), overall survival, objective response rate (ORR) and disease control rate. RNA sequencing was performed on 32 tumors. RESULTS: Patients receiving first-line immune checkpoint inhibitor (ICI) based combination therapy achieved longer PFS than those treated without ICI (median PFS: 11.5 vs. 5.1 months, P = 0.098). After stratification of fusion partners, the superior efficacy of first-line ICI based combination therapy was predominantly observed in ASPSCR1-TFE3 rRCC (median PFS: not reached vs. 6.5 months, P = 0.01; ORR: 67.5% vs. 10.0%, P = 0.019), but almost not in non-ASPSCR1-TFE3 rRCC. Transcriptomic data revealed enrichment of ECM and collagen-related signaling in ASPSCR1-TFE3 rRCC, which might interfere with the potential efficacy of anti-angiogenic monotherapy. Whereas angiogenesis and immune activities were exclusively enriched in ASPSCR1-TFE3 rRCC and promised the better clinical outcomes with ICI plus tyrosine kinase inhibitor combination therapy. CONCLUSIONS: The current study represents the largest cohort comparing treatment outcomes and investigating molecular correlates of metastatic TFE3-rRCC based on fusion partner stratification. ICI based combination therapy could serve as an effective first-line treatment option for metastatic ASPSCR1-TFE3 rRCC patients. Regarding with other fusion subtypes, further investigations should be performed to explore the molecular mechanisms to propose pointed therapeutic strategy accordingly.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Carcinoma, Renal Cell , Immune Checkpoint Inhibitors , Kidney Neoplasms , Oncogene Proteins, Fusion , Humans , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/mortality , Female , Male , Middle Aged , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/mortality , Aged , Immune Checkpoint Inhibitors/therapeutic use , Oncogene Proteins, Fusion/genetics , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Gene Rearrangement , Biomarkers, Tumor/genetics , Treatment Outcome , Prognosis , Intracellular Signaling Peptides and Proteins/genetics
4.
Food Chem ; 454: 139755, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38810445

ABSTRACT

Accurate and rapid monitoring of organophosphorus pesticides (OPs) residues is crucial for regulating food safety. Herein, dual-emission carbon dots (de-CDs) were fabricated for the ratiometric detection of OPs and Hg2+. The de-CDs exhibited two emission peaks at 678 and 485 nm when excited with visible light. Interestingly, the fluorescence at 678 nm was significantly quenched by Hg2+ mainly because of the static quenching effect, whereas that at 485 nm exhibited a slight change. More significantly, the quenched fluorescence of the de-CDs recovered remarkably after introducing omethoate, diazinon and malathion. Accordingly, the ratiometric detection of the three OPs and Hg2+ was achieved with high selectivity and robust performance. In addition, the OPs residues assay in Brassica chinensis was successfully performed with satisfactory results. This study not only provides an attractive tool for the simple and rapid assay of OPs but also offers new insights into the fabrication of multi-functional carbon dots.


Subject(s)
Brassica , Carbon , Mercury , Organophosphorus Compounds , Quantum Dots , Brassica/chemistry , Carbon/chemistry , Mercury/analysis , Quantum Dots/chemistry , Organophosphorus Compounds/analysis , Hydrogen-Ion Concentration , Pesticides/analysis , Pesticides/chemistry , Spectrometry, Fluorescence/methods , Food Contamination/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Pesticide Residues/analysis , Pesticide Residues/chemistry
5.
Inorg Chem ; 63(20): 9050-9057, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38709957

ABSTRACT

A mononuclear four-coordinate Co(II) complex with a [CoIIO4] core, namely, PPN[Li(MeOH)4][Co(L)2] (1) (PPN = bis(phosphoranediyl)iminium; H2L = perfluoropinacol), has been studied by X-ray crystallography, magnetic characterization, and theoretical calculations. This complex presents a severely distorted coordination geometry. The O-Co-O bite angle is 83.42°/83.65°, and the dihedral twist angle between the O-Co-O chelate planes is 55.6°. The structural distortion results in a large easy-axis magnetic anisotropy with D = -104(1) cm-1 and a transverse component with |E| = +4(2) cm-1. Alternating current (ac) susceptibility measurements demonstrate that 1 exhibits slow relaxation of magnetization at zero static field. However, the frequency-dependent out-of-phase (χ"M) susceptibilities of 1 at 0 Oe do not show a characteristic maximum. Upon the application of a dc field or the dilution with a diamagnetic Zn matrix, the quantum tunneling of magnetization (QTM) process can be successfully suppressed. Notably, after dilution with the Zn matrix, the obtained sample exhibits a structure different from that of the pristine complex. In this altered sample, the asymmetric unit does not contain the Li(MeOH)4+ cation, resulting in an O-Co-O bite angle of 86.05° and a dihedral twist angle of 75.84°, thereby leading to an approximate D2d symmetry. Although such differences are not desirable for magnetic studies, this study still gives some insights. Theoretical calculations reveal that the D parameter is governed by the O-Co-O bite angle, in line with our previous report for other tetrahedral Co(II) complex with a [CoIIN4] core. On the other hand, the rhombic component is found to increase as the dihedral angle deviates from 90°. These findings provide valuable guidelines for fine-tuning the magnetic properties of Co(II) complexes.

6.
Int J Surg ; 110(6): 3923-3936, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38573063

ABSTRACT

BACKGROUND: Circulating tumor DNA (ctDNA) has emerged as a noninvasive technique that provides valuable insights into molecular profiles and tumor disease management. This study aimed to evaluate the prognostic significance of circulating tumor DNA (ctDNA) in urothelial carcinoma (UC) through a systematic review and meta-analysis. METHODS: A comprehensive search was conducted in MEDLINE, EMBASE, and the Cochrane Library from the inception to December 2023. Studies investigating the prognostic value of ctDNA in UC were included. Hazard ratios (HRs) of disease-free survival (DFS) and overall survival (OS) were extracted. Overall meta-analysis and subgroup exploration stratified by metastatic status, ctDNA sampling time, treatment type, and detection method was performed using the R software (version 4.2.2). RESULTS: A total of 16 studies with 1725 patients were included. Fourteen studies assessed the association between baseline ctDNA status and patient outcomes. Patients with elevated ctDNA levels exhibited significantly worse DFS (HR=6.26; 95% CI: 3.71-10.58, P <0.001) and OS (HR=4.23; 95% CI: 2.72-6.57, P <0.001) regardless of metastatic status, ctDNA sampling time, treatment type, and detection methods. Six studies evaluated the prognostic value of ctDNA dynamics in UC. Patients who showed a decrease or clearance in ctDNA levels during treatment or observation demonstrated more favorable DFS (HR=0.26, 95% CI: 0.17-0.41, P <0.001) and OS (HR=0.21, 95% CI: 0.11-0.38, P <0.001) compared to those who did not. The association remained consistent across the subgroup analysis based on metastatic status and detection methods. In the immune checkpoint inhibitor-treated setting, both lower baseline ctDNA level and ctDNA decrease during the treatment were significantly associated with more favorable oncologic outcomes. Furthermore, specific gene mutations such as FGFR3 identified in ctDNA also demonstrated predictive value in UC patients. CONCLUSION: This meta-analysis demonstrates a strong association of ctDNA status and its dynamic change with survival outcomes in UC, suggesting substantial clinical utility of ctDNA testing in prognosis prediction and decision making in this setting.


Subject(s)
Circulating Tumor DNA , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Prognosis , Carcinoma, Transitional Cell/blood , Carcinoma, Transitional Cell/mortality , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/diagnosis , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Urologic Neoplasms/blood , Urologic Neoplasms/mortality , Urologic Neoplasms/genetics , Urologic Neoplasms/pathology , Urologic Neoplasms/diagnosis , Urinary Bladder Neoplasms/blood , Urinary Bladder Neoplasms/mortality , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/diagnosis , Disease-Free Survival
7.
J Phys Chem Lett ; 15(15): 4158-4166, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38597419

ABSTRACT

All-inorganic CsPbI2Br perovskite is striking as a result of the reasonable band gap and thermal stability. However, the notorious air instability, unsatisfactory conversion efficiencies, and toxic water-soluble Pb2+ ions have greatly limited the further development of CsPbI2Br-based devices. Herein, a facile strategy is developed to prepare efficient and air-stable CsPbI2Br-based perovskite solar cells (PSCs) with in situ lead leakage protection. With the introduction of 2,2'-dihydroxy-4,4'-dimethoxy-5,5'-disulfobenzophenone disodium salt (BP-9) into the CsPbI2Br precursor solution, the crystallization of perovskite can be regulated at a reduced trap density, the uncoordinated Pb2+ ions and electron-rich defects in the structure can be passivated to suppress non-radiative recombination, and the energy level arrangement can be optimized to improve charge carrier transport. Consequently, the optimized PSC achieved a championship efficiency of 17.11%, accompanied by negligible J-V hysteresis and remarkably improved air stability. More importantly, the strong chelation of BP-9 with water-soluble Pb2+ ions minimizes the leakage of toxic lead in the perovskite structure.

8.
Clin Cancer Res ; 30(11): 2571-2581, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38512114

ABSTRACT

PURPOSE: Fumarate hydratase-deficient renal cell carcinoma (FH-deficient RCC) is a rare and lethal subtype of kidney cancer. However, the optimal treatments and molecular correlates of benefits for FH-deficient RCC are currently lacking. EXPERIMENTAL DESIGN: A total of 91 patients with FH-deficient RCC from 15 medical centers between 2009 and 2022 were enrolled in this study. Genomic and bulk RNA-sequencing (RNA-seq) were performed on 88 and 45 untreated FH-deficient RCCs, respectively. Single-cell RNA-seq was performed to identify biomarkers for treatment response. Main outcomes included disease-free survival (DFS) for localized patients, objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) for patients with metastasis. RESULTS: In the localized setting, we found that a cell-cycle progression signature enabled to predict disease progression. In the metastatic setting, first-line immune checkpoint inhibitor plus tyrosine kinase inhibitor (ICI+TKI) combination therapy showed satisfactory safety and was associated with a higher ORR (43.2% vs. 5.6%), apparently superior PFS (median PFS, 17.3 vs. 9.6 months, P = 0.016) and OS (median OS, not reached vs. 25.7 months, P = 0.005) over TKI monotherapy. Bulk and single-cell RNA-seq data revealed an enrichment of memory and effect T cells in responders to ICI plus TKI combination therapy. Furthermore, we identified a signature of memory and effect T cells that was associated with the effectiveness of ICI plus TKI combination therapy. CONCLUSIONS: ICI plus TKI combination therapy may represent a promising treatment option for metastatic FH-deficient RCC. A memory/active T-cell-derived signature is associated with the efficacy of ICI+TKI but necessitates further validation.


Subject(s)
Carcinoma, Renal Cell , Fumarate Hydratase , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/therapy , Fumarate Hydratase/deficiency , Fumarate Hydratase/genetics , Male , Female , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/immunology , Kidney Neoplasms/mortality , Kidney Neoplasms/therapy , Middle Aged , Aged , Adult , Lymphocyte Activation/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Immunologic Memory , Prognosis , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Immunotherapy/methods , Memory T Cells/immunology , T-Lymphocytes/immunology
9.
Int J Biol Macromol ; 266(Pt 1): 131169, 2024 May.
Article in English | MEDLINE | ID: mdl-38554899

ABSTRACT

Autogenous bone transplantation is a prevalent clinical method for addressing bone defects. However, the limited availability of donor bone and the morbidity associated with bone harvesting have propelled the search for suitable bone substitutes. Bio-inspired scaffolds, particularly those fabricated using electron beam melting (EBM) deposition technology, have emerged as a significant advancement in this field. These 3D-printed titanium alloy scaffolds are celebrated for their outstanding biocompatibility and favorable elastic modulus. Thermosensitive chitosan hydrogel, which transitions from liquid to solid at body temperature, serves as a popular carrier in bone tissue engineering. Icariin (ICA), known for its efficacy in promoting osteoblast differentiation from bone marrow mesenchymal stem cells (BMSCs), plays a crucial role in this context. We developed a system combining a 3D-printed titanium alloy with a thermosensitive chitosan hydrogel, capable of local bone regeneration and integration through ICA delivery. Our in vitro findings reveal that this system can gradually release ICA, demonstrating excellent biocompatibility while fostering BMSC proliferation and osteogenic differentiation. Immunohistochemistry and Micro-CT analyses further confirm the effectiveness of the system in accelerating in vivo bone regeneration and enhancing osseointegration. This composite system lays a significant theoretical foundation for advancing local bone regeneration and integration.


Subject(s)
Alloys , Cell Differentiation , Chitosan , Flavonoids , Hydrogels , Mesenchymal Stem Cells , Osseointegration , Osteogenesis , Printing, Three-Dimensional , Tissue Scaffolds , Titanium , Chitosan/chemistry , Chitosan/pharmacology , Titanium/chemistry , Osseointegration/drug effects , Alloys/chemistry , Alloys/pharmacology , Tissue Scaffolds/chemistry , Animals , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Osteogenesis/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Bone Regeneration/drug effects , Tissue Engineering/methods
10.
Article in English | MEDLINE | ID: mdl-38414718

ABSTRACT

Purpose: The study comprehensively evaluated the prognostic roles of the platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), basophil-to-lymphocyte ratio (BLR), and eosinophil-to-lymphocyte ratio (ELR) in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Patients and Methods: Six hundred and nineteen patients with AECOPD and 300 healthy volunteers were retrospectively included into the study. The clinical characteristics of the patients with AECOPD and the complete blood counts (CBCs) of the healthy volunteers were collected. The associations of PLR, NLR, MLR, BLR, and ELR with airflow limitation, hospital length of stay (LOS), C-reactive protein (CRP), and in-hospital mortality in patients with AECOPD were analyzed. Results: Compared with the healthy volunteers, PLR, NLR, MLR, BLR, and ELR were all elevated in COPD patients under stable condition. PLR, NLR, MLR, and BLR were further elevated while ELR was lowered during exacerbation. In the patients with AECOPD, PLR, NLR, and MLR were positively correlated with hospital LOS as well as CRP. In contrast, ELR was negatively correlated with hospital LOS as well as CRP. Elevated PLR, NLR, and MLR were all associated with more severe airflow limitation in AECOPD. Elevated PLR, NLR, and MLR were all associated with increased in-hospital mortality while elevated ELR was associated with decreased in-hospital mortality. Binary logistic regression analysis showed that smoking history, FEV1% predicted, pneumonia, pulmonary heart disease (PHD), uric acid (UA), albumin, and MLR were significant independent predictors ofin-hospital mortality. These predictors along with ELR were used to construct a nomogram for predicting in-hospital mortality in AECOPD. The nomogram had a C-index of 0.850 (95% CI: 0.799-0.901), and the calibration curve, decision curve analysis (DCA), and clinical impact curve (CIC) further demonstrated its good predictive value and clinical applicability. Conclusion: In summary, PLR, NLR, MLR, and ELR served as useful biomarkers in patients with AECOPD.


Subject(s)
Neutrophils , Pulmonary Disease, Chronic Obstructive , Humans , Monocytes , Eosinophils , Retrospective Studies , Lymphocytes , Biomarkers , Prognosis , C-Reactive Protein/analysis
11.
Angew Chem Int Ed Engl ; 63(14): e202319153, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38356309

ABSTRACT

As a sustainable valorization route, electrochemical glycerol oxidation reaction (GOR) involves in formation of key OH* and selective adsorption/cleavage of C-C(O) intermediates with multi-step electron transfer, thus suffering from high potential and poor formate selectivity for most non-noble-metal-based electrocatalysts. So, it remains challenging to understand the structure-property relationship as well as construct synergistic sites to realize high-activity and high-selectivity GOR. Herein, we successfully achieve dual-high performance with low potentials and superior formate selectivity for GOR by forming synergistic Lewis and Brønsted acid sites in Ni-alloyed Co-based spinel. The optimized NiCo oxide solid-acid electrocatalyst exhibits low reaction potential (1.219 V@10 mA/cm2) and high formate selectivity (94.0 %) toward GOR. In situ electrochemical impedance spectroscopy and pH-dependence measurements show that the Lewis acid centers could accelerate OH* production, while the Brønsted acid centers are proved to facilitate high-selectivity formation of formate. Theoretical calculations reveal that NiCo alloyed oxide shows appropriate d-band center, thus balancing adsorption/desorption of C-O intermediates. This study provides new insights into rationally designing solid-acid electrocatalysts for biomass electro-upcycling.

12.
Inorg Chem ; 63(3): 1702-1708, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38181171

ABSTRACT

Developing highly active, highly stable, and cheap electrocatalysts for water splitting is of great significance for hydrogen production. Herein, we report an amorphous Ni(OH)2-clothed transition Ni8P3 catalyst, in which the amorphous Ni(OH)2 shell provides catalytic active sites and serves as a proton conductive encapsulation layer to ensure efficient proton supply to the active Ni8P3 sites. As expected, the Ni8P3@Ni(OH)2 catalyst exhibits significant water decomposition performance at low and high current densities of 10, 100, and 1000 mA cm-2 at 1.45, 1.71, and 2.21 V, respectively, which is comparable to those of commercial electrocatalysts. In particular, the prepared Ni8P3@Ni(OH)2 electrodes possess exceptional long-term durability (200 h) at high current (over 1 A). The significantly improved water-splitting activity and durability in alkaline medium are expected to make them attractive catalyst materials to produce renewable chemical fuels.

13.
Inorg Chem ; 63(3): 1507-1512, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38198122

ABSTRACT

Single-step ethylene (C2H4) production from acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) mixtures was realized via the strategy of a flow channel with recognition corners in MOF NTUniv-64. Both the uptake amounts and the enthalpy of adsorption (Qst) showed the same order of C2H2 > C2H6 > C2H4. Breakthrough testing also verified the above data and the C2H4 purification ability. Grand Canonical Monte Carlo (GCMC) simulations indicated that uneven corners could precisely detain C2H2 and C2H6, in which the C-H···π interaction distance between C2H2 (2.84 Å) and C2H6 (3.03 Å) and the framework was shorter than that of C2H4 (3.85 Å).

14.
Chem Commun (Camb) ; 60(11): 1412-1415, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38205596

ABSTRACT

A carbazole-based artificial light-harvesting system (LHS) was successfully fabricated based on the supramolecular assembly of AIE-enhanced donor (CTD), water-soluble phosphate-pillar[5]arene (WPP5), and eosin Y (ESY) acceptor. The formed WPP5-CTD possessed remarkable AIE emission, featuring an ideal energy donor for light harvesting. After encapsulation of ESY, the energy of WPP5-CTD was efficiently transferred to ESY in WPP5-CTD-ESY, and the antenna effect was 38.5, which was much higher than that of recently reported LHSs. Notably, WPP5-CTD-ESY was successfully utilized as a photocatalyst to realize the cross-coupling dehydrogenation reaction of diphenylphosphine oxide and benzothiazole derivatives, suggesting great potential for aqueous photocatalytic applications of this LHS.

15.
Chem Commun (Camb) ; 60(16): 2184-2187, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38295377

ABSTRACT

Herein, we report a nanocomposite electrocatalyst with coupled Cu and NiO, showing a high Faraday efficiency of 97% and excellent ammonia production rate (450 mg h-1 cm-2) for nitrate reduction. In situ UV-vis spectroscopic studies confirmed that the synergy between NiO and Cu could avoid NO2- enrichment and promote tandem nitrate reduction to ammonia synthesis.

16.
Inorg Chem ; 63(1): 50-55, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38150825

ABSTRACT

One-step C2H4 purification from a mixture of C2H2/C2H4/C2H6 could be achieved by metal-organic framework (MOF) NTUniv-70 with an F-functional group. The selectivities of C2H4/C2H6 and C2H4/C2H2 of NTUnvi-70 based on ideal adsorbed solution theory were at least twice that of the original MOF platform, which was in line with the enthalpy of adsorption (Qst) and breakthrough testing. Grand canonical Monte Carlo simulations indicated that the C-H···F interactions played an important role in enhanced C2H4/C2H6 and C2H4/C2H2 adsorption selectivities.

17.
Inorg Chem ; 62(49): 19922-19929, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37988594

ABSTRACT

The concept of an expanding MOF with unexpanded channel size was realized in MOF NTUniv-61 by the utilization of a ketone-functional-group-decorated semirigid ligand and pillar-layer platform. After this unusual expansion, the preferential C2H6 adsorption was preserved via the unchanged pore size, and the functional group was inserted into the MOF. Interestingly, the C2H2 uptake ability, C2H4 selective adsorption ability, and structural stability were obviously enhanced due to the incorporation of the ketone functional group, which were further verified by isosteric heats of adsorption (Qst), GCMC modeling, and breakthrough experiments.

18.
Inorg Chem ; 62(46): 18814-18819, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37947424

ABSTRACT

One-step C2H4 purification from a mixture of C2H2/C2H4/C2H6 by physical adsorption separation was realized via creating an ethane trap in MOF NTUniv-63 by the utilization of a ketone-decorated semirigid ligand, which has further been verified by the breakthrough experiment, isosteric heats of adsorption (Qst), and Grand Canonical Monte Carlo (GCMC) modeling.

19.
Org Lett ; 25(50): 9030-9035, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38019556

ABSTRACT

Herein, a base metal-enabled chemodivergent cyclization of propargylamines for the atom-economic construction of nitrogen heterocycles has been developed. Due to the different modes of activation of metal to propargylamine, copper-catalyzed 6-endo-dig cyclization generates functionalized 2-substitued quinoline-4-carboxylates, while iron-promoted cascade amino Claisen rearrangement, aromatization, and aza-Michael addition afford diverse 2-substituted indole-3-carboxylate derivatives. Excellent selectivity, broad functional group tolerance, mild conditions, and flexible late-stage functionalization illustrate the high efficiency and synthetic utility of this chemodivergent reaction.

20.
Cancer Med ; 12(24): 22370-22380, 2023 12.
Article in English | MEDLINE | ID: mdl-37986697

ABSTRACT

BACKGROUND: The mutational pattern of homologous recombination repair (HRR)-associated gene alterations in Chinese urothelial carcinoma (UC) necessitates comprehensive sequencing efforts, and the clinical implications of HRR gene mutations in UC remain to be elucidated. MATERIALS AND METHODS: We delineated the mutational landscape of 343 Chinese UC patients from West China Hospital and 822 patients from The Cancer Genome Atlas (TCGA) using next-generation sequencing (NGS). Data from 182 metastatic UC patients from MSK-IMPACT cohort were used to assess the association between HRR mutations and immunotherapy efficacy. Comprehensive transcriptomic analysis was performed to explore the impact of HRR mutations on tumor immune microenvironment. RESULTS: Among Chinese UC patients, 34% harbored HRR gene mutations, with BRCA2, ATM, BRCA1, CDK12, and RAD51C being the most prevalently mutated genes. Mutational signatures contributing to UC differed between patients with and without HRR mutations. Signature 22 for exposure to aristolochic acid was only observed in Chinese UC patients. The presence of HRR mutations was correlated with higher tumor mutational burden, neoantigen burden, and PD-L1 expression. Importantly, patients with HRR mutations exhibited significantly improved prognosis following immunotherapy compared to those without HRR mutations. CONCLUSIONS: Our findings provide valuable insights into the genomic landscape of Chinese UC patients and underscore the molecular rationale for utilizing immunotherapy in UC patients with HRR mutations.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Recombinational DNA Repair , Genes, cdc , Mutation , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...