Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mater Horiz ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39308419

ABSTRACT

Low dimensional metal halide perovskites (MHPs) have a soft lattice, leading to strong exciton phonon coupling and exciton localization. Microstructural stiffness engineering is an effective tool for modulating the mechanical and electrical properties of materials, but its complex effects on the luminescence of low dimensional MHPs remain lacking. Here, we report microstructural stiffness engineering of low dimensional MHPs by halogen replacement in Ag-X bonds and [AgX4]3- (X = Br, Cl) units to increase the Young's modulus from 15.6 to 18.3 GPa, resulting in a 10-fold enhancement of X-ray excited luminescence (XEL) intensity and a 16-fold enhancement of photoluminescence quantum yield (PLQY), from 2.8% to 44.3%. Spectroscopic analysis reveals that high stiffness in Rb2AgCl3 facilitates the radiative pathway of defect-bound excitons and efficiently decreases the non-radiative transitions. The projected crystal orbital Hamilton population shows that the shorter Ag-Cl bonds impart Rb2AgCl3 with superior anti-deformation ability upon photoexcitation, leading to enhanced radiation resistance performance. A scintillation screen based on Rb2AgCl3@PDMS achieves zero self-absorption, an ultra-low detection limit of 44.7 nGyair s-1, and a high resolution of 20 lp mm-1, outperforming most reported X-ray detectors. This work sheds light on stiffness engineering for the rational design of efficient emitters.

2.
J Phys Chem Lett ; 15(27): 7036-7044, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38949737

ABSTRACT

Fast-decaying scintillators show subnanoseconds or nanoseconds lifetime and high time resolution, making them important in nuclear physics, medical diagnostics, scientific research, and other fields. Metal halide perovskites (MHPs) show great potential for scintillator applications owing to their easy synthesis procedure and attractive optical properties. However, MHPs scintillators still need further improvement in decay lifetime. To optimize the decay lifetime, great progress has been achieved recently. In this Perspective, we first summarize the structural characteristics of MHPs in various dimensions, which brings different exciton behaviors. Then, recent advances in designing fast-decaying MHPs according to different exciton behaviors have been concluded, focusing on the photophysical mechanisms to achieve fast-decaying lifetimes. These advancements in decay lifetimes could facilitate the MHPs scintillators in advanced applications, such as time-of-flight positron emission tomography (TOF-PET), photon-counting computed tomography (PCCT), etc. Finally, the challenges and future opportunities are discussed to provide a roadmap for designing novel fast-decaying MHPs scintillators.

3.
J Phys Chem Lett ; 14(16): 3818-3825, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37058299

ABSTRACT

Bi4Ge3O12 (BGO) is a traditional scintillator, widely used in high-energy physics and nuclear medicine. However, it not only suffers from low scintillation intensity but also tends to be damaged by high-energy rays. Herein, we prepare pure-phase BGO materials enriched with Bi vacancies by rationally reduced Bi content, showing significantly enhanced luminescence intensity and irradiation resistance ability. The optimized Bi3.6Ge3O12 shows 178% of luminescence intensity compared to BGO. After 50 h of ultraviolet irradiation, Bi3.6Ge3O12 possesses ∼80% of original luminescence intensity, much superior to the 60% for BGO. The existence of the Bi vacancy is identified by advanced experimental and theoretical studies. The mechanism studies show the Bi vacancies could cause the symmetry destruction of the local field around the Bi3+ ion. It enhances scintillation luminescence by increasing the probability of radiative transition while resisting nonradiative relaxation caused by irradiation damage. This study initiates vacancy-induced performance enhancement for inorganic scintillators.

SELECTION OF CITATIONS
SEARCH DETAIL