Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(16): e36082, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39247282

ABSTRACT

Nature-based solutions (NBS) have been promoted as a holistic way to solve a variety of societal issues while benefiting biodiversity at the same time. To date, applications of NBS approaches that help ensure food security have yet been systematically reviewed. In this paper, we critically review the specific NBS for food security, highlighting their limitations, to provide recommendations that promote their applications for improving global food security. We accessed and evaluated publications on four different scholastic databases, and our systematic review of relevant materials indicated that many NBS approaches can be applied to enhance food security dimensions individually or together. However, there is a strong bias towards food availability, and not enough research has been done to link NBS with improvements in food access and utilization. Over 80 % of the reviewed papers were of short-term studies or without specific timeframes, and 25 % offered no information on the economic effectiveness of NBS. Environmental benefits of NBS were explicitly described in about 60 % of these papers, and biodiversity enhancement was measured in only about 10 %. We, therefore, recommend future applications of NBS to safeguard food security be shifted to food access and utilization with careful consultation with local communities to address their specific context, using indicators that are easily measured and managed. Systematic monitoring regimes and robust and diversified financial support systems are also equally important in efforts to successfully implement NBS. Moreover, environmental and societal benefits, especially water productivity and biodiversity, must be incorporated into the planning and design of NBS.

2.
J Hydrometeorol ; 20(8): 1595-1617, 2019 Aug.
Article in English | MEDLINE | ID: mdl-32908457

ABSTRACT

Terrestrial hydrologic trends over the conterminous United States are estimated for 1980-2015 using the National Climate Assessment Land Data Assimilation System (NCA-LDAS) reanalysis. NCA-LDAS employs the uncoupled Noah version 3.3 land surface model at 0.125°× 1258° forced with NLDAS-2 meteorology, rescaled Climate Prediction Center precipitation, and assimilated satellite-based soil moisture, snow depth, and irrigation products. Mean annual trends are reported using the nonparametric Mann-Kendall test at p < 0.1 significance. Results illustrate the interrelationship between regional gradients in forcing trends and trends in other land energy and water stores and fluxes. Mean precipitation trends range from +3 to +9 mm yr-1 in the upper Great Plains and Northeast to -1 to -9 mm yr-1 in the West and South, net radiation flux trends range from 10.05 to 10.20 W m-2 yr-1 in the East to -0.05 to -0.20 W m-2 yr-1 in the West, and U.S.-wide temperature trends average about +0.03 K yr-1. Trends in soil moisture, snow cover, latent and sensible heat fluxes, and runoff are consistent with forcings, contributing to increasing evaporative fraction trends from west to east. Evaluation of NCA-LDAS trends compared to independent data indicates mixed results. The RMSE of U.S.-wide trends in number of snow cover days improved from 3.13 to 2.89 days yr-1 while trend detection increased 11%. Trends in latent heat flux were hardly affected, with RMSE decreasing only from 0.17 to 0.16 W m-2 yr-1, while trend detection increased 2%. NCA-LDAS runoff trends degraded significantly from 2.6 to 16.1 mm yr-1 while trend detection was unaffected. Analysis also indicated that NCA-LDAS exhibits relatively more skill in low precipitation station density areas, suggesting there are limits to the effectiveness of satellite data assimilation in densely gauged regions. Overall, NCA-LDAS demonstrates capability for quantifying physically consistent, U.S. hydrologic climate trends over the satellite era.

SELECTION OF CITATIONS
SEARCH DETAIL