Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
Hum Mov Sci ; 96: 103256, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39094379

ABSTRACT

In this study, we investigated how the temporal properties of the preparation phase for upper limb movements are affected by the reaching direction and distance. Twelve right-handed participants performed three motor tasks: two types of reaching movements and one finger-lifting movement. The reaching movements were performed from the home position to 15 target locations (five directions and three distances) as quickly and precisely as possible under two conditions: pre-cueing the target to allocate the sufficient time for the motor-planning process before movement initiation, and no-cuing. The finger lifting movement was performed by lifting the index finger (from the home position) upward in the air as quickly as possible. The reaction time (RT), movement time (MT), and kinematics of the index finger were obtained for each condition. In addition, differential RTs (DRT) were calculated by subtracting the RT for no-cue lifting from that for no-cue reaching, thereby implicitly representing the time required for the motor-planning process for reaching movements. The results indicated the anisotropy of the DRTs being larger in the forward and left-forward directions than that in the right-forward direction, and larger in the forward direction than that in the right direction for the middle distance. It is suggested that the temporal costs of the motor-planning process depend on the movement direction and distance. In the kinematic analysis, the MTs showed the anisotropy being the largest in the left-forward among all directions. Meanwhile, the time from peak velocity to terminate the movement (TFPV) was significantly longer in the left-forward direction when no-cueing the target than when pre-cueing. These results suggest that reaching movement is refined during the online-control process to accomplish the intended performance if a reaching movement under the no-cue condition is initiated before building sufficient motor planning, especially in the direction requiring large temporal costs. It is likely that humans achieve their intended movements by allocating the temporal costs required before and after movement initiation according to the difficulty of motor control which varies with the direction and distance.


Subject(s)
Psychomotor Performance , Reaction Time , Humans , Biomechanical Phenomena , Psychomotor Performance/physiology , Male , Young Adult , Female , Adult , Arm/physiology , Cues , Orientation , Movement/physiology , Fingers/physiology
2.
iScience ; 27(2): 108967, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38352229

ABSTRACT

The dose-response characteristics of transcranial direct current stimulation (tDCS) remain uncertain but may be related to variability in brain electric fields due to individual anatomical factors. Here, we investigated whether the electric fields influence the responses to motor cortical tDCS. In a randomized cross-over design, 21 participants underwent 10 min of anodal tDCS with 0.5, 1.0, 1.5, or 2.0 mA or sham. Compared to sham, all active conditions increased the size of motor evoked potentials (MEP) normalized to the pre-tDCS baseline, irrespective of anterior or posterior magnetic test stimuli. The electric field calculated in the motor cortex of each participant had a nonlinear effect on the normalized MEP size, but its effects were small compared to those of other participant-specific factors. The findings support the efficacy of anodal tDCS in enhancing the MEP size but do not demonstrate any benefits of personalized electric field modeling in explaining tDCS response variability.

3.
PLoS One ; 18(9): e0291715, 2023.
Article in English | MEDLINE | ID: mdl-37733687

ABSTRACT

Human body movements are based on the intrinsic trade-off between speed and accuracy. Fitts's law (1954) shows that the time required for movement is represented by a simple logarithmic equation and is applicable to a variety of movements. However, few studies have determined the role of the direction in modulating the performance of upper limb movements and the effects of the interactions between direction and distance and between direction and target size. This study examined the variations in temporal properties of the speed-accuracy trade-off in arm-pointing movements that directly manipulate objects according to the direction, distance, and target size. Participants performed pointing movements to the targets with 3 different sizes presented at 15 locations (5 directions and 3 distances) on a horizontal plane. Movement time (MT) for each trial in each condition was obtained. Subsequently, Mackenzie's model (1992), MT = a + b log2(D/W +1), where D and W represent the distance and width of the target, respectively, was fitted. The slope factor b, a fitted parameter in the equation, was calculated and evaluated according to the changes in the direction, distance, and target size. The results showed that MTs exhibited anisotropy in the hemifield, being the smallest in the right-forward direction. Additionally, the slope factor b, as a function of distance, was smaller in the rightward direction than in the forward and left-forward directions. These results suggest that the degree of difficulty of upper limb movements expands heterogeneously in various directions around the body.


Subject(s)
Arm , Complement Factor B , Humans , Anisotropy , Movement , Seizures
4.
Sci Rep ; 13(1): 11853, 2023 07 22.
Article in English | MEDLINE | ID: mdl-37481585

ABSTRACT

Awareness of the direction of the body's (longitudinal) axis is fundamental for action and perception. The perceived body axis orientation is strongly biased during body tilt; however, the neural substrates underlying this phenomenon remain largely unknown. Here, we tackled this issue using a neuropsychological approach in patients with hemispheric stroke. Thirty-seven stroke patients and 20 age-matched healthy controls adjusted a visual line with the perceived body longitudinal axis when the body was upright or laterally tilted by 10 degrees. The bias of the perceived body axis caused by body tilt, termed tilt-dependent error (TDE), was compared between the groups. The TDE was significantly smaller (i.e., less affected performance by body tilt) in the stroke group (15.9 ± 15.9°) than in the control group (25.7 ± 17.1°). Lesion subtraction analysis and Bayesian lesion-symptom inference revealed that the abnormally reduced TDEs were associated with lesions in the right occipitotemporal cortex, such as the superior and middle temporal gyri. Our findings contribute to a better understanding of the neuroanatomy of body-centred spatial coding during whole-body tilt.


Subject(s)
Neuroanatomy , Stroke , Humans , Bayes Theorem , Cerebral Cortex , Dichlorodiphenyldichloroethane
5.
Multisens Res ; 36(4): 367-386, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37080552

ABSTRACT

The mechanisms underlying geocentric (orientations of an object or the body relative to 'gravity') and egocentric estimates (object orientation relative to the 'body') have each been examined; however, little is known regarding the association between these estimates, especially when the body is nearly upright. To address this, we conducted two psychophysical experiments. In Experiment 1, participants estimated the direction of a visual line (subjective visual vertical; SVV) and their own body relative to gravity (subjective body tilt; SBT) and the direction of a visual line relative to the body longitudinal axis (subjective visual body axis; SVBA) during a small-range whole-body roll tilt. We evaluated the correlations between performance on each of these tasks as covariates of actual body tilt angles. Our results showed a significant correlation of performance (estimation errors) on the SVBA task with performance on the SBT task but not performance on the SVV task at the group level after adjusting for the actual body tilt angles, suggesting a link between the estimates for SVBA and SBT tasks. To confirm this relationship, in Experiment 2, we further assessed whether manipulating the subjective direction of the body axis by providing visual feedback in the SVBA task subsequently affected SBT performance. We found that feedback in the SVBA task significantly shifted the SBT angles even when the actual body angles were identical. The observed association between SVBA and SBT performance supports at least a partially shared mechanism underlying body tilt and egocentric estimates when the body is nearly upright.


Subject(s)
Orientation , Space Perception , Humans , Standing Position , Gravitation , Feedback, Sensory , Visual Perception
6.
J Vis ; 23(1): 16, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36689216

ABSTRACT

Accurate memory regarding the location of an object with respect to one's own body, termed egocentric visuospatial memory, is essential for action directed toward the object. Although researchers have suggested that the brain stores information related to egocentric visuospatial memory not only in the eye-centered reference frame but also in the other egocentric (i.e., head- or body-centered or both) reference frames, experimental evidence is scarce. Here, we tested this possibility by exploiting the perceptual distortion of head/body-centered coordinates via whole-body tilt relative to gravity. We hypothesized that if the head/body-centered reference frames are involved in storing the egocentric representation of a target in memory, then reproduction would be affected by this perceptual distortion. In two experiments, we asked participants to reproduce the remembered location of a visual target relative to their head/body. Using intervening whole-body roll rotations, we manipulated the initial (target presentation) and final (reproduction of the remembered location) body orientations in space and evaluated the effect on the reproduced location. Our results showed significant biases of the reproduced target location and perceived head/body longitudinal axis in the direction of the intervening body rotation. Importantly, the amount of error was correlated across participants. These results provide experimental evidence for the neural encoding and storage of information related to egocentric visuospatial memory in the head/body-centered reference frames.


Subject(s)
Psychomotor Performance , Space Perception , Humans , Brain , Orientation , Mental Recall
7.
Clin Neurophysiol Pract ; 6: 234-238, 2021.
Article in English | MEDLINE | ID: mdl-34466758

ABSTRACT

OBJECTIVE: Pain sensation at the site of stimulation is a side effect of transcranial magnetic stimulation (TMS). The purpose of this study was to investigate how or whether the coil orientation affected TMS-induced pain on Broca's area (BA) or primary motor cortex (M1). METHODS: In Experiment 1, we measured pain thresholds during single-pulse TMS delivered over BA or left M1 at seven coil orientation angles (-90° to 90°, in 30° increments) relative to the posterior-anterior (PA) orientation. In Experiment 2, we evaluated subjective pain intensity when delivering TMS at an intensity of 110% of the resting motor threshold, which is commonly used in conventional TMS studies. RESULTS: In Experiment 1, we found a significant relationship between coil orientation and pain thresholds during BA stimulation but not M1 stimulation. During BA stimulation, pain thresholds were significantly lower when the coil orientation was 30° upward (-30° condition) relative to the PA orientation compared with 60° downward (60° condition). In Experiment 2, pain sensations were significantly stronger in the -30° condition compared with those in the 60° condition. We also confirmed that the averaged location of pain on the head in both conditions were more than 25 mm from the left lateral orbital rim. CONCLUSIONS: The coil orientation of TMS over BA affects pain sensations. This might be attributable to the activation of nociceptors and nociceptive fibers in the muscle tissues above BA, rather than the orbicularis oculi muscle. SIGNIFICANCE: Although the influence of coil orientation on the TMS efficacy is unclear, this study suggests that manipulating the orientation of the TMS coil may be helpful in reducing pain when applying TMS to BA.

8.
Sci Rep ; 11(1): 14659, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34282178

ABSTRACT

Accurate perception of the orientations of the body axis and gravity is essential for actions. The ability to perceive these orientations during head and body tilt varies across individuals, and its underlying neural basis is unknown. To address this, we investigated the association between inter-individual differences in local gray matter (GM) volume and inter-individual differences in the ability to estimate the directions of body longitudinal axis or gravity during whole-body tilt using voxel-based morphometry (VBM) analysis in 50 healthy adults (20-46 years, 25 men and 25 women). Although no anatomical regions were identified relating to performance requiring estimates of gravitational direction, we found a significant correlation between the GM volume in the right middle occipital gyrus and the ability to estimate the body axis orientation. This finding provides the first evidence on neuroanatomical substrates of the perception of body axis orientation during body tilt.


Subject(s)
Brain/anatomy & histology , Orientation, Spatial/physiology , Posture/physiology , Adult , Brain/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Perception/physiology , Tilt-Table Test , Young Adult
9.
PLoS One ; 16(4): e0250851, 2021.
Article in English | MEDLINE | ID: mdl-33930085

ABSTRACT

Concurrent body movements have been shown to enhance the accuracy of spatial judgment, but it remains unclear whether they also contribute to perceptual estimates of gravitational space not involving body movements. To address this, we evaluated the effects of static or dynamic arm movements during prolonged whole-body tilt on the subsequent perceptual estimates of visual or postural vertical. In Experiment 1, participants were asked to continuously perform static or dynamic arm movements during prolonged tilt, and we assessed their effects on the prolonged tilt-induced shifts of subjective visual vertical (SVV) at a tilted position (during-tilt session) or near upright (post-tilt session). In Experiment 2, we evaluated how static or dynamic arm movements during prolonged tilt subsequently affected the subjective postural vertical (SPV). In Experiment 1, we observed that the SVV was significantly shifted toward the direction of prolonged tilt in both sessions. The SVV shifts decreased when performing dynamic arm movements in the during-tilt session, but not in the post-tilt session. In Experiment 2, as well as SVV, the SPV was shifted toward the direction of prolonged tilt, but it was not significantly attenuated by the performance of static or dynamic arm movements. The results of the during-tilt session suggest that the central nervous system utilizes additional information generated by dynamic body movements for perceptual estimates of visual vertical.


Subject(s)
Arm/physiology , Head Movements/physiology , Orientation/physiology , Perceptual Distortion/physiology , Space Perception/physiology , Adult , Female , Gravitation , Humans , Male , Movement , Posture/physiology , Visual Perception/physiology , Young Adult
10.
Front Neurosci ; 15: 644951, 2021.
Article in English | MEDLINE | ID: mdl-33679319

ABSTRACT

For human protection, the internal electric field is used as a dosimetric quantity for electromagnetic fields lower than 5-10 MHz. According to international standards, in this frequency range, electrostimulation is the main adverse effect against which protection is needed. One of the topics to be investigated is the quantification of the internal electric field threshold levels of perception and pain. Pain has been reported as a side effect during transcranial magnetic stimulation (TMS), especially during stimulation of the Broca's (speech) area of the brain. In this study, we designed an experiment to conduct a dosimetry analysis to quantify the internal electric field corresponding to perception and pain thresholds when targeting the Broca's and M1 areas from magnetic stimulator exposure. Dosimetry analysis was conducted using a multi-scale analysis in an individualized head model to investigate electrostimulation in an axonal model. The main finding is that the stimulation on the primary motor cortex has higher perception and pain thresholds when compared to Broca's area. Also, TMS-induced electric field applied to Broca's area exhibited dependence on the coil orientation at lower electric field threshold which was found to be related to the location and thickness of pain fibers. The derived dosimetry quantities provide a scientific rationale for the development of human protection guidelines and the estimation of possible side effects of magnetic stimulation in clinical applications.

11.
Front Neurosci ; 14: 559, 2020.
Article in English | MEDLINE | ID: mdl-32581694

ABSTRACT

Transcranial magnetic stimulation (TMS) is commonly used in basic research to evaluate human brain function. Although scalp pain is a side effect, no studies have quantitatively assessed the TMS intensity threshold for inducing pain and whether sensitivity to TMS-induced pain differs between sexes. In the present study, we measured pain thresholds when single-pulse TMS was applied over either Broca's area (BA) or left primary motor cortex (M1), and compared these thresholds with the motor threshold (MT) for inducing motor evoked potentials (MEPs) through M1 stimulation. Additionally, we compared the pain thresholds for BA and M1 between males and females. We found that pain thresholds for both sites were significantly lower than the MT. Furthermore, the pain threshold for BA was much lower than that for M1. No significant difference was observed between sexes. The results suggest that TMS at an intensity equivalent to MTs, which is often used in experimental or clinical studies, causes slight scalp pain. Experimental designs using TMS to evaluate functional relationships between brain and behavior should consider scalp pain and reduce its likelihood as much as possible.

12.
Neurosci Lett ; 716: 134687, 2020 01 18.
Article in English | MEDLINE | ID: mdl-31838018

ABSTRACT

To internally estimate gravitational direction and body orientation, the central nervous system considers several sensory inputs from the periphery and prior knowledge of gravity. It is hypothesized that the modulation of visual inputs, supplying indirect information of gravity, affects the prior knowledge established internally by other sensory inputs from vestibular and somatosensory systems, leading to the alteration of perceived body orientation relative to gravity. In order to test the hypothesis, we examined the effect of presenting a visual motion stimulus during a whole-body static tilt on the subsequent evaluation of the perceived postural vertical. Fifteen subjects watched a target moving along the body longitudinal axis directing from head to feet with constant downward acceleration (CA condition) or constant velocity (CV condition), or they did not receive any visual stimulation (NV condition) during the whole-body static tilt. Subsequently, the direction of the subjective postural vertical (SPV) was evaluated. The result showed that the SPV in the CA condition was significantly tilted toward the direction of the preceding tilt compared to that in the NV condition while those in the CV and NV conditions were not significantly different. The present result suggests that dynamic visual motion along body longitudinal axis with downward acceleration can modulate prior knowledge of gravity, and in turn this affects the perception of body verticality.


Subject(s)
Gravitation , Orientation, Spatial/physiology , Space Perception/physiology , Adult , Female , Humans , Knowledge , Male , Motion , Motion Perception/physiology , Photic Stimulation , Posture
13.
Front Psychol ; 9: 84, 2018.
Article in English | MEDLINE | ID: mdl-29497389

ABSTRACT

In our day-to-day life, we can accurately reach for an object in our gravitational environment without any effort. This can be achieved even when the body is tilted relative to gravity. This is accomplished by the central nervous system (CNS) compensation for gravitational forces and torque acting on the upper limbs, based on the magnitude of body tilt. The present study investigated how performance of upper limb movements was influenced by the alteration of body orientation relative to gravity. We observed the spatial trajectory of the index finger while the upper limb reached for a memorized target with the body tilted in roll plane. Results showed that the terminal location of the fingertip shifted toward the direction of body tilt away from the actual target location. The subsequent experiment examined if the perceived direction of the body longitudinal axis shifted relative to the true direction in roll plane. The results showed that the perceived direction of the body longitudinal axis shifted toward the direction of the body tilt, which correlated with the shift of the terminal location in the first experiment. These results suggest that the dissociation between the egocentric and gravitational coordinates induced by whole-body tilt leads to systematic shifts of the egocentric reference frame for action, which in turn influences the motor performance of goal-directed upper limb movements.

14.
Motor Control ; 21(3): 359-371, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27219006

ABSTRACT

This study investigated the effect of monaural auditory stimulus on hand selection when reaching. Healthy right-handed participants were asked to reach to a visual target and were free to use either the right or left hand. A visual target appeared at one of 11 positions in the visual field between -25 and 25 degrees of the horizontal visual angle. An auditory stimulus was given either in the left or right ear 100 ms after the presentation of the visual target, or no auditory stimulus was given. An auditory stimulus in the right ear increased right hand selection, and that in the left ear slightly increased left hand selection when reaching to a target around the midline of the visual field. The horizontal visual angle, where the probabilities of right hand selection and left hand selection were equal when reaching, shifted leftward when an auditory stimulus was given in the right ear, but the angle did not shift in either direction when an auditory stimulus was given in the left ear. The right-ear-dominant auditory stimulus effect on hand selection indicates hemispheric asymmetry of cortical activity for hand selection.


Subject(s)
Acoustic Stimulation/methods , Functional Laterality/physiology , Hand/innervation , Adult , Female , Hand/physiopathology , Humans , Male
15.
J Phys Ther Sci ; 28(10): 2737-2741, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27821925

ABSTRACT

[Purpose] This study investigated whether it is possible to predict return to home at discharge from a rehabilitation hospital in Japan using the home care score of patients with cerebrovascular or osteoarticular disease and low activities of daily living at admission. [Subjects and Methods] The home care score and functional independent measurement were determined for 226 patients at admission and at discharge from five hospitals, and receiver operating characteristic analyses were conducted. [Results] The home care score cutoff point for the prediction of return to home at admission and at discharge was 11, and the area under the curve was more than 0.8. The area under the curve of the home care score was 0.77 for patients with low activities of daily living and within this group, the probability of return to home was approximately 50%, as predicted by the functional independent measurement. The home care score increased after receiving intervention at a rehabilitation hospital. [Conclusion] The home care score is useful for the prediction of return to home from a rehabilitation hospital, although prediction using the functional independent measurement is difficult for patients with low activities of daily living. Moreover, comprehensive interventions provided by the rehabilitation hospitals improve the ability to provide home care of the patient's family, which is assessed by the home care score.

16.
J Phys Ther Sci ; 28(10): 2979-2983, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27821973

ABSTRACT

[Purpose] Post-stroke astasia is an inability to stand without external support despite having sufficient muscle strength. However, the dysfunction underlying astasia is unclear. We tested the hypothesis that astasia is the result of an abnormal bias in vertical perception, especially subjective postural vertical (SPV), mediated by somatosensory inputs. [Subjects and Methods] A patient with a right posterolateral thalamus hemorrhage had a tendency to fall toward the contralesional side during standing after 8 weeks of treatment. SPV, standing duration, and physical function were evaluated before and after a 1 week standard rehabilitation baseline period, and after a 1 week intervention period, where standing training requiring the patient to control his body orientation in reference to somatosensory inputs from his ipsilateral upper limb was added. [Results] SPV was biased toward the contralesional side before and after the 1 week baseline period. However, SPV improved into the normal range and he could stand for a longer duration after the intervention period. [Conclusion] This case suggests that abnormal SPV is one of the functional mechanisms underlying astasia, and it indicates the effectiveness of standing training with somatosensory information to improve abnormal SPV and postural disorders.

17.
Percept Mot Skills ; 122(1): 238-55, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27420319

ABSTRACT

Corticospinal excitability in the hand muscles decreases during smooth pursuit eye movement. The present study tested a hypothesis that the decrease in corticospinal excitability in the hand muscles at rest during eye movement is not caused by visual feedback but caused by motor commands to the eye muscles. Healthy men (M age = 28.4 yr., SD = 5.2) moved their eyes to the right with visual occlusion (dark goggles) while their arms and hands remained at rest. The motor-evoked potential in the hand muscles was suppressed by 19% in the third quarter of the eye-movement period, supporting a view that motor commands to the eye muscles are the cause of the decrease in corticospinal excitability in the hand muscles. The amount of the suppression was not significantly different among the muscles, indicating that modulation of corticospinal excitability in one muscle induced by eye movement is not dependent on whether eye movement direction and the direction of finger movement when the muscle contracts are identical. Thus, the finding failed to support a hypothetical view that motor commands to the eye muscles concomittantly produce motor commands to the hand muscles. Moreover, the amount of the suppression was not significantly different between the forearm positions, indicating that the suppression was not affected by proprioception of the forearm muscles when visual feedback is absent.


Subject(s)
Evoked Potentials, Motor/physiology , Eye Movements/physiology , Hand/physiology , Muscle, Skeletal/physiology , Pyramidal Tracts/physiology , Adult , Electromyography , Forearm/physiology , Humans , Male , Proprioception/physiology , Transcranial Magnetic Stimulation , Young Adult
18.
Front Hum Neurosci ; 10: 95, 2016.
Article in English | MEDLINE | ID: mdl-27014026

ABSTRACT

The purpose of this study was to investigate corticospinal modulation of bimanual (BM) movement with different relative phases (RPs). The participants rhythmically abducted and adducted the right index finger (unimanual (UM) movement) or both index fingers (BM movement) with a cyclic duration of 1 s. The RP of BM movement, defined as the time difference between one hand movement and the other hand movement, was 0°, 90°, or 180°. Motor evoked potentials (MEPs) in the right flexor dorsal interosseous muscle elicited by transcranial magnetic stimulation (TMS) were obtained during UM or BM movement. Corticospinal excitability in the first dorsal interosseous muscle during BM movement with 90° RP was higher than that during UM movement or BM movement with 0° or 180° RP. The correlation between muscle activity level and corticospinal excitability during BM movement with 90° RP was smaller than that during UM movement or BM movement with 0° or 180° RP. The higher corticospinal excitability during BM movement with 90° RP may be caused by the greater effort expended to execute a difficult task, the involvement of interhemispheric interaction, a motor binding process, or task acquisition. The lower dependency of corticospinal excitability on the muscle activity level during BM movement with 90° RP may reflect the minor corticospinal contribution to BM movement with an RP that is not in the attractor state.

19.
Hum Mov Sci ; 47: 38-48, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26854584

ABSTRACT

This study investigated time and direction preparation of motor response to force load while intending to maintain the finger at the initial neutral position. Force load extending or flexing the index finger was given while healthy humans intended to maintain the index finger at the initial neutral position. Electromyographic activity was recorded from the first dorsal interosseous muscle. A precue with or without advanced information regarding the direction of the forthcoming force load was given 1000ms before force load. Trials without the precue were inserted between the precued trials. A long latency stretch reflex was elicited by force load regardless of its direction, indicating that the long latency stretch reflex is elicited not only by muscle stretch afferents, but also by direction-insensitive sensations. Time preparation of motor response to either direction of force load enhanced the long latency stretch reflex, indicating that time preparation is not mediated by afferent discharge of muscle stretch. Direction preparation enhanced the long latency stretch reflex and increased corticospinal excitability 0-20ms after force load when force load was given in the direction stretching the muscle. These enhancements must be induced by preset of the afferent pathway mediating segmental stretch reflex.


Subject(s)
Fingers/physiology , Muscle, Skeletal/physiology , Reflex, Stretch/physiology , Adult , Afferent Pathways , Electromyography , Female , Humans , Male , Time Factors , Young Adult
20.
Rehabil Res Pract ; 2015: 501042, 2015.
Article in English | MEDLINE | ID: mdl-26491568

ABSTRACT

Purpose. The aim of this study was to assess whether the home care score (HCS), which was developed by the Ministry of Health and Welfare in Japan in 1992, is useful for the prediction of advisability of home care. Methods. Subjects living at home and in assisted-living facilities were analyzed. Binominal logistic regression analyses, using age, sex, the functional independence measure score, and the HCS, along with receiver operating characteristic curve analyses, were conducted. Findings/Conclusions. Only HCS was selected for the regression equation. Receiver operating characteristic curve analysis revealed that the area under the curve (0.9), sensitivity (0.82), specificity (0.83), and positive predictive value (0.84) for HCS were higher than those for the functional independence measure, indicating that the HCS is a powerful predictor for advisability of home care. Clinical Relevance. Comprehensive measurements of the condition of provided care and the activities of daily living of the subjects, which are included in the HCS, are required for the prediction of advisability of home care.

SELECTION OF CITATIONS
SEARCH DETAIL