Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Circ Heart Fail ; 17(8): e011663, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39087355

ABSTRACT

BACKGROUND: The health-related quality of life (HRQOL) and cardiopulmonary exercise testing (CPET) performance of individuals with subclinical and early stage hypertrophic cardiomyopathy (HCM) have not been systematically studied. Improved understanding will inform the natural history of HCM and factors influencing well-being. METHODS: VANISH trial (Valsartan for Attenuating Disease Evolution in Early Sarcomeric HCM) participants with early stage sarcomeric HCM (primary analysis cohort) and subclinical HCM (sarcomere variant without left ventricular hypertrophy comprising the exploratory cohort) who completed baseline and year 2 HRQOL assessment via the pediatric quality of life inventory and CPET were studied. Metrics correlating with baseline HRQOL and CPET performance were identified. The impact of valsartan treatment on these measures was analyzed in the early stage cohort. RESULTS: Two hundred participants were included: 166 with early stage HCM (mean age, 23±10 years; 40% female; 97% White; and 92% New York Heart Association class I) and 34 subclinical sarcomere variant carriers (mean age, 16±5 years; 50% female; and 100% White). Baseline HRQOL was good in both cohorts, although slightly better in subclinical HCM (composite pediatric quality of life score 84.6±10.6 versus 90.2±9.8; P=0.005). Both cohorts demonstrated mildly reduced functional status (mean percent predicted peak oxygen uptake 73±16 versus 78±12 mL/kg per minute; P=0.18). Percent predicted peak oxygen uptake and peak oxygen pulse correlated with HRQOL. Valsartan improved physical HRQOL in early stage HCM (adjusted mean change in pediatric quality of life score +4.1 versus placebo; P=0.01) but did not significantly impact CPET performance. CONCLUSIONS: Functional capacity can be impaired in young, healthy people with early stage HCM, despite New York Heart Association class I status and good HRQOL. Peak oxygen uptake was similarly decreased in subclinical HCM despite normal left ventricular wall thickness and excellent HRQOL. Valsartan improved physical pediatric quality of life scores but did not significantly impact CPET performance. Further studies are needed for validation and to understand how to improve patient experience. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01912534.


Subject(s)
Cardiomyopathy, Hypertrophic , Exercise Test , Exercise Tolerance , Quality of Life , Valsartan , Humans , Female , Cardiomyopathy, Hypertrophic/physiopathology , Cardiomyopathy, Hypertrophic/drug therapy , Male , Adolescent , Exercise Tolerance/drug effects , Young Adult , Adult , Valsartan/therapeutic use , Child , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Treatment Outcome
2.
J Am Coll Cardiol ; 83(19): 1841-1851, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38719365

ABSTRACT

BACKGROUND: Nondilated left ventricular cardiomyopathy (NDLVC) has been recently differentiated from dilated cardiomyopathy (DCM). A comprehensive characterization of these 2 entities using cardiac magnetic resonance (CMR) and genetic testing has never been performed. OBJECTIVES: This study sought to provide a thorough characterization and assess clinical outcomes in a large multicenter cohort of patients with DCM and NDLVC. METHODS: A total of 462 patients with DCM (227) or NDLVC (235) with CMR data from 4 different referral centers were retrospectively analyzed. The study endpoint was a composite of sudden cardiac death or major ventricular arrhythmias. RESULTS: In comparison to DCM, NDLVC had a higher prevalence of pathogenic or likely pathogenic variants of arrhythmogenic genes (40% vs 23%; P < 0.001), higher left ventricular (LV) systolic function (LV ejection fraction: 51% ± 12% vs 36% ± 15%; P < 0.001) and higher prevalence of free-wall late gadolinium enhancement (LGE) (27% vs 14%; P < 0.001). Conversely, DCM showed higher prevalence of pathogenic or likely pathogenic variants of nonarrhythmogenic genes (23% vs 12%; P = 0.002) and septal LGE (45% vs 32%; P = 0.004). Over a median follow-up of 81 months (Q1-Q3: 40-132 months), the study outcome occurred in 98 (21%) patients. LGE with septal location (HR: 1.929; 95% CI: 1.033-3.601; P = 0.039) was independently associated with the risk of sudden cardiac death or major ventricular arrhythmias together with LV dilatation, older age, advanced NYHA functional class, frequent ventricular ectopic activity, and nonsustained ventricular tachycardia. CONCLUSIONS: In a multicenter cohort of patients with DCM and NDLVC, septal LGE together with LV dilatation, age, advanced disease, and frequent and repetitive ventricular arrhythmias were powerful predictors of major arrhythmic events.


Subject(s)
Cardiomyopathy, Dilated , Magnetic Resonance Imaging, Cine , Humans , Male , Female , Cardiomyopathy, Dilated/diagnostic imaging , Cardiomyopathy, Dilated/physiopathology , Middle Aged , Retrospective Studies , Magnetic Resonance Imaging, Cine/methods , Adult , Aged , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Follow-Up Studies
3.
J Mech Behav Biomed Mater ; 155: 106571, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744118

ABSTRACT

Cardiac fibrosis refers to the abnormal accumulation of extracellular matrix within the cardiac muscle, leading to increased stiffness and impaired heart function. From a rheological standpoint, knowledge about myocardial behavior is still lacking, partially due to a lack of appropriate techniques to investigate the rheology of in vitro cardiac tissue models. 3D multicellular cardiac spheroids are powerful and versatile platforms for modeling healthy and fibrotic cardiac tissue in vitro and studying how their mechanical properties are modulated. In this study, cardiac spheroids were created by co-culturing neonatal rat ventricular cardiomyocytes and fibroblasts in definite ratios using the hanging-drop method. The rheological characterization of such models was performed by Atomic Force Microscopy-based stress-relaxation measurements on the whole spheroid. After strain application, a viscoelastic bi-exponential relaxation was observed, characterized by a fast relaxation time (τ1) followed by a slower one (τ2). In particular, spheroids with higher fibroblasts density showed reduction for both relaxation times comparing to control, with a more pronounced decrement of τ1 with respect to τ2. Such response was found compatible with the increased production of extracellular matrix within these spheroids, which recapitulates the main feature of the fibrosis pathophysiology. These results demonstrate how the rheological characteristics of cardiac tissue vary as a function of cellular composition and extracellular matrix, confirming the suitability of such system as an in vitro preclinical model of cardiac fibrosis.


Subject(s)
Fibrosis , Myocytes, Cardiac , Rheology , Spheroids, Cellular , Animals , Spheroids, Cellular/cytology , Spheroids, Cellular/pathology , Rats , Myocytes, Cardiac/cytology , Fibroblasts/cytology , Myocardium/cytology , Myocardium/pathology , Myocardium/metabolism , Rats, Wistar , Models, Biological
4.
Int J Mol Sci ; 25(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474188

ABSTRACT

Actin-binding filamin C (FLNC) is expressed in cardiomyocytes, where it localizes to Z-discs, sarcolemma, and intercalated discs. Although FLNC truncation variants (FLNCtv) are an established cause of arrhythmias and heart failure, changes in biomechanical properties of cardiomyocytes are mostly unknown. Thus, we investigated the mechanical properties of human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) carrying FLNCtv. CRISPR/Cas9 genome-edited homozygous FLNCKO-/- hiPSC-CMs and heterozygous knock-out FLNCKO+/- hiPSC-CMs were analyzed and compared to wild-type FLNC (FLNCWT) hiPSC-CMs. Atomic force microscopy (AFM) was used to perform micro-indentation to evaluate passive and dynamic mechanical properties. A qualitative analysis of the beating traces showed gene dosage-dependent-manner "irregular" peak profiles in FLNCKO+/- and FLNCKO-/- hiPSC-CMs. Two Young's moduli were calculated: E1, reflecting the compression of the plasma membrane and actin cortex, and E2, including the whole cell with a cytoskeleton and nucleus. Both E1 and E2 showed decreased stiffness in mutant FLNCKO+/- and FLNCKO-/- iPSC-CMs compared to that in FLNCWT. The cell adhesion force and work of adhesion were assessed using the retraction curve of the SCFS. Mutant FLNC iPSC-CMs showed gene dosage-dependent decreases in the work of adhesion and adhesion forces from the heterozygous FLNCKO+/- to the FLNCKO-/- model compared to FLNCWT, suggesting damaged cytoskeleton and membrane structures. Finally, we investigated the effect of crenolanib on the mechanical properties of hiPSC-CMs. Crenolanib is an inhibitor of the Platelet-Derived Growth Factor Receptor α (PDGFRA) pathway which is upregulated in FLNCtv hiPSC-CMs. Crenolanib was able to partially rescue the stiffness of FLNCKO-/- hiPSC-CMs compared to control, supporting its potential therapeutic role.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Biomechanical Phenomena , Filamins/metabolism , Actins/metabolism , Myocardium
5.
Cells ; 13(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38334670

ABSTRACT

Truncating mutations in filamin C (FLNC) are associated with dilated cardiomyopathy and arrhythmogenic cardiomyopathy. FLNC is an actin-binding protein and is known to interact with transmembrane and structural proteins; hence, the ablation of FLNC in cardiomyocytes is expected to dysregulate cell adhesion, cytoskeletal organization, sarcomere structural integrity, and likely nuclear function. Our previous study showed that the transcriptional profiles of FLNC homozygous deletions in human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly comparable to the transcriptome profiles of hiPSC-CMs from patients with FLNC truncating mutations. Therefore, in this study, we used CRISPR-Cas-engineered hiPSC-derived FLNC knockout cardiac myocytes as a model of FLNC cardiomyopathy to determine pathogenic mechanisms and to examine structural changes caused by FLNC deficiency. RNA sequencing data indicated the significant upregulation of focal adhesion signaling and the dysregulation of thin filament genes in FLNC-knockout (FLNCKO) hiPSC-CMs compared to isogenic hiPSC-CMs. Furthermore, our findings suggest that the complete loss of FLNC in cardiomyocytes led to cytoskeletal defects and the activation of focal adhesion kinase. Pharmacological inhibition of PDGFRA signaling using crenolanib (an FDA-approved drug) reduced focal adhesion kinase activation and partially normalized the focal adhesion signaling pathway. The findings from this study suggest the opportunity in repurposing FDA-approved drug as a therapeutic strategy to treat FLNC cardiomyopathy.


Subject(s)
Cardiomyopathies , Filamins , Induced Pluripotent Stem Cells , Humans , Cardiomyopathies/metabolism , Filamins/genetics , Filamins/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Sarcomeres/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL