Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
J Texture Stud ; 55(4): e12845, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992972

ABSTRACT

In this study, Provence tomato variety was chosen for investigating the environmental causes of tomato fruit cracking, cracks characteristics, and their propagation prediction in a greenhouse. Fruit bagging approach was used to alter the temperature and humidity and to create a microclimate around the fruit to induce fruit cracking for testing. Results showed that the fruit cracking rate increased when the environment temperature exceeded 30°C, and the difference between the highest and lowest temperature values in a day was greater than 20°C. The cracking rate was aggravated when the difference between the highest and lowest humidity values in a day was less than 20%. The proportions of top cracking, longitudinal cracking, ring cracking, radial cracking, and combined cracking were 5.4%, 16.1%, 28.3%, 26.8%, and 32.1%, respectively. The fruit shoulder was the most susceptible region to crack, followed by fruit belly and top regions, whereas longer cracks were observed in the fruit belly region indicating a higher propensity to crack propagation in that region. Finally, the measured data were used to validate an extended finite element method developed to effectively predict cracking susceptibility and propagation in tomato fruit with a relative error of 4.68%.


Subject(s)
Fruit , Solanum lycopersicum , Temperature , Humidity , Environment
2.
Polymers (Basel) ; 16(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39065408

ABSTRACT

Poly-γ-glutamic acid (γ-PGA) is a carboxylic-acid-rich, bio-derived, water-soluble, edible, hydrating, non-immunogenic polymer produced naturally by several microorganisms. Here, we re-emphasise the ability of Bacillus subtilis natto to naturally produce γ-PGA on whole seaweed, as well as for the yields and chemical properties of the material to be affected by the presence of Mn(2+). Hyaluronic acid (HA) is an extracellular glycosaminoglycan which presents a high concentration of carboxylic acid and hydroxyl groups, being key in fulfilling numerous applications. Currently, there are strong environmental (solvent use), social (non-vegan extraction), and economic factors pushing for the biosynthesis of this material through prokaryotic microorganisms, which is not yet scalable or sustainable. Our study aimed to investigate an innovative raw material which can combine both superior hygroscopicity and UV protection to the cosmetic industry. Comparable hydration effect of commercially available γ-PGA to conventional moisturising agents (HA and glycerol) was observed; however, greater hydration capacity was observed from seaweed-derived γ-PGA. Herewith, successful incorporation of seaweed-derived γ-PGA (0.2-2 w/v%) was achieved for several model cream systems with absorbances reported at 300 and 400 nm. All γ-PGA-based creams displayed shear thinning behaviour as the viscosity decreased, following increasing shear rates. Although the use of commercial γ-PGA within creams did not suggest a significant effect in rheological behaviour, this was confirmed to be a result of the similar molecular weight. Seaweed-derived γ-PGA cream systems did not display any negative effect on model HaCaT keratinocytes by means of in vitro MTT analysis.

3.
Front Chem ; 11: 1158147, 2023.
Article in English | MEDLINE | ID: mdl-37153520

ABSTRACT

Poly-γ-glutamic acid (γ-PGA) is a bio-derived water-soluble, edible, hydrating, non-immunogenic polymer. Bacillus subtilis natto is a wild-type γ-PGA producer originally isolated from Japanese fermented natto beans whose activity has been shown to be enhanced through ion-specific activation of Extrachromosomal DNA maintenance mechanisms. Being a GRAS γ-PGA producer, this microorganism has attracted great interest in its use within an industrial context. Here we successfully synthesised amorphous, crystalline and semi-crystalline γ-PGA between 11-27 g/L. In line with circular economy principles, scalable macroalgal biomass has been evaluated as substrate for γ-PGA, displaying great potential in both yields and material composition. In this study whole cell, freeze dried seaweed -namely Laminaria digitata, Saccharina latissima and Alaria esculenta-were pre-treated by means of mechanical methods, sterilised and subsequently inoculated with B. subtilis natto. High shear mixing was found to be the most suitable pre-treatment technique. Supplemented L. digitata (9.1 g/L), S. latissima (10.2 g/L), A. esculenta (13 g/L) displayed γ-PGA yields comparable to those of standard GS media (14.4 g/L). Greatest yields of pure γ-PGA were obtained during the month of June for L. digitata (Avg. 4.76 g/L) comparable to those obtained with GS media (7.0 g/L). Further, pre-treated S. latissima and L. digitata complex media enabled for high molar mass (4,500 kDa) γ-PGA biosynthesis at 8.6 and 8.7 g/L respectively. Compared to standard GS media, algal derived γ-PGA displayed significantly higher molar masses. Further studies will be necessary to further evaluate the impact of varying ash contents upon the stereochemical properties and modify the properties of algal media based γ-PGA with the aid of key nutrients; however, the material synthesised to date can directly displace a number of fossil fuel derived chemicals in drug delivery applications, cosmetics, bioremediation, wastewater treatment, flocculation and as cryoprotectants.

4.
J Texture Stud ; 54(1): 76-84, 2023 02.
Article in English | MEDLINE | ID: mdl-36112427

ABSTRACT

Fruit cells are living irregular three-dimensional (3D) transparent objects which makes them challenging to determine their real 3D size and shape through only two-dimensional (2D) images using the existing biological microscope. This study deals with a newly self-developed biological microscope including a microscope imaging system, a light source system, a stage and a support base for the 3D size characterization of fruit single cells. The main design concept is based on two optical path systems set up at the front (x-axis) and bottom (z-axis) directions of a transparent chamber containing single cells that allow the front view and bottom view of the single cell to be observed. Performance indicators such as mass, size, observation range, objective magnification, total magnification, focal range, focal accuracy, and resolution of the developed biological microscope were estimated. Finally, the 3D geometry size of single tomato cells was measured by the new biological microscope to demonstrate the relative ease at which accurate real 3D geometry information of single fruit cells could be obtained, which echoes its scientific value.


Subject(s)
Fruit , Plant Cells , Fruit/cytology , Plant Cells/ultrastructure , Microscopy
5.
Polymers (Basel) ; 14(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36501456

ABSTRACT

The application of mulch films for preserving soil moisture and preventing weed growth has been a part of agricultural practice for decades. Different materials have been used as mulch films, but polyethylene plastic has been considered most effective due to its excellent mechanical strength, low cost and ability to act as a barrier for sunlight and water. However, its use carries a risk of plastic pollution and health hazards, hence new laws have been passed to replace it completely with other materials over the next few years. Research to find out about new biodegradable polymers for this purpose has gained impetus in the past few years, driven by regulations and the United Nations Organization's Sustainable Development Goals. The primary requisite for these polymers is biodegradability under natural climatic conditions without the production of any toxic residual compounds. Therefore, biodegradable polymers developed from fossil fuels, microorganisms, animals and plants are viable options for using as mulching material. However, the solution is not as simple since each polymer has different mechanical properties and a compromise has to be made in terms of strength, cost and biodegradability of the polymer for its use as mulch film. This review discusses the history of mulching materials, the gradual evolution in the choice of materials, the process of biodegradation of mulch films, the regulations passed regarding material to be used, types of polymers that can be explored as potential mulch films and the future prospects in the area.

6.
Food Res Int ; 162(Pt A): 112017, 2022 12.
Article in English | MEDLINE | ID: mdl-36461304

ABSTRACT

Fruit cells' shape generally reflects the physiological state and quality of the fruit, and indirectly dictates its economics. In this study, a new bio-microscope including three independent and orthogonal channels of opto-electromechanical microscopic observation systems was developed to obtain the three views (e.g., front view, top view, side view) of a single fruit cell using tomato and strawberry at two ripening stages as fruit samples. The obtained three-view images were used to reconstruct the 3D real shape of a single cell based on the 3D geometrical modelling method using Solidworks CAD design software and then compared with the actual geometric size. The average relative errors for the major diameter, minor diameter 1, minor diameter 2, projection perimeter and projection area were 4.04 %, 6.25 %, 5.71 %, 1.69 % and 3.79 %, respectively. This good accuracy makes the newly developed bio-microscope together with the proposed 3D geometrical modelling method a promising 3D shape reconstruction technology for a single fruit cell to extract real and detailed cell morphology information. Furthermore, this method can find applications in other fields such as human and animal cells where soft particles' 3D shape analysis is important.


Subject(s)
Fragaria , Solanum lycopersicum , Animals , Humans , Fruit
7.
Biotechnol Adv ; 61: 108049, 2022 12.
Article in English | MEDLINE | ID: mdl-36243207

ABSTRACT

Bio-derived materials have long been harnessed for their potential as backbones of biodegradable constructs. With increasing understanding of organismal biochemistry and molecular genetics, scientists are now able to obtain biomaterials with properties comparable to those achieved by the petroleum industry. Poly-γ-glutamic acid (γ-PGA) is an anionic pseudopolypeptide produced and secreted by several microorganisms, especially Bacillus species. γ-PGA is polymerised via the pgs intermembrane enzymatic complex expressed by many bacteria (including GRAS member - Bacillus subtilis). γ-PGA can exist as a homopolymer of L- glutamic acid or D- glutamic acid units or it can be a co-polymer comprised of D and L enantiomers. This non-toxic polymer is highly viscous, soluble, biodegradable and biocompatible. γ-PGA is also an example of versatile chiral-polymer, a characteristic that draws great attention from the industry. Increased understanding in the correlation between microbial genetics, substrate compositions, fermentation conditions and polymeric chemical characteristics have led to bioprocess optimisation to provide cost competitive, non-petroleum-based, biodegradable solutions. This review presents detailed insights into microbial synthesis of γ-PGA and summaries current understanding of the correlation between genetic makeup of γ-PGA-producing bacteria, range of culture cultivation conditions, and physicochemical properties of this incredibly versatile biopolymer. Additionally, we hope that review provides an updated overview of findings relevant to sustainable and cost-effective biosynthesis of γ-PGA, with application in medicine, pharmacy, cosmetics, food, agriculture and for bioremediation.


Subject(s)
Bacillus , Glutamic Acid , Polyglutamic Acid/genetics , Bacillus subtilis/metabolism , Bacillus/genetics , Fermentation , Biopolymers
8.
Bioengineering (Basel) ; 9(9)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36134978

ABSTRACT

This review article will discuss the ways in which various polymeric materials, such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and poly(ethylene terephthalate) (PET) can potentially be used to produce bioplastics, such as polyhydroxyalkanoates (PHAs) through microbial cultivation. We will present up-to-date information regarding notable microbial strains that are actively used in the biodegradation of polyolefins. We will also review some of the metabolic pathways involved in the process of plastic depolymerization and discuss challenges relevant to the valorization of plastic waste. The aim of this review is also to showcase the importance of methods, including oxidative degradation and microbial-based processes, that are currently being used in the fields of microbiology and biotechnology to limit the environmental burden of waste plastics. It is our hope that this article will contribute to the concept of bio-upcycling plastic waste to value-added products via microbial routes for a more sustainable future.

9.
Foods ; 11(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35954123

ABSTRACT

The development of fortified healthy pleasant foods, in which saturated fats are replaced with unsaturated ones, poses a challenge for the food industry due to their susceptibility to oxidative rancidity, which decreases product shelf-life, causes the destruction of health-promoting molecules, and forms potentially toxic compounds. A comparative study applying the Arrhenius model was carried out to investigate the oxidative stability and predict the shelf-life of a newly developed no added sugar chocolate spread formulated with sunflower oil, and fortified with vitamin D, Mg, and Ca checked against two commercially available spreads: No Palm and a well-known commercially available product (RB). The results obtained from the accelerated shelf-life testing for peroxide value (PV) showed relatively higher activation energy (Ea, 14.48 kJ/mol K) for RB, whereas lower Ea (11.31-12.78 kJ/mol K) was obtained for No Palm and all the experimental spread chocolates. Q10 values were comparable (1.202-1.154), indicating a similar catalytic effect of the temperature upon the oxidation rate across all the investigated samples. The positive Gibbs free energies ranged from 75.014 to 83.550 kJ/mol and pointed out that the lipid oxidation reaction in the chocolate spread was an endergonic process. The predicted shelf-life at 293.15 K was 8.57 months (RB), 7 months (No Palm), and 6.8 months for all the experimental spreadable chocolate. However, the higher production of hydroperoxides was observed in chocolate fortified with magnesium-calcium carbonate nanoparticles and stored at 313.15 and 323.15 K, suggesting these particles may enhance lipid oxidation.

10.
Polymers (Basel) ; 14(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35890616

ABSTRACT

Presented herein are the results of a novel recycling method for waste Tetra Pak® packaging materials. The polyethylene (PE-T) component of this packaging material, obtained via a separation process using a "solvents method", was used as a carbon source for the biosynthesis of polyhydroxyalkanoates (PHAs) by the bacterial strain Cupriavidus necator H16. Bacteria were grown for 48-72 h, at 30 °C, in TSB (nitrogen-rich) or BSM (nitrogen-limited) media supplemented with PE-T. Growth was monitored by viable counting. It was demonstrated that C. necator utilised PE-T in both growth media, but was only able to accumulate 40% w/w PHA in TSB supplemented with PE-T. Only 1.5% w/w PHA was accumulated in the TSB control, and no PHA was detected in the BSM control. Extracted biopolymers were characterised by nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR) spectroscopy, electrospray tandem mass spectrometry (ESI-MS/MS), gel permeation chromatography (GPC), and accelerator mass spectrometry (AMS). The characterisation of PHA by ESI-MS/MS revealed that PHA produced by C. necator in TSB supplemented with PE-T contained 3-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate co-monomeric units. AMS analysis also confirmed the presence of 96.73% modern carbon and 3.27% old carbon in PHA derived from Tetra Pak®. Thus, this study demonstrates the feasibility of our proposed recycling method for waste Tetra Pak® packaging materials, alongside its potential for producing value-added PHA, and the ability of 14C analysis in validating this bioconversion process.

11.
Polymers (Basel) ; 14(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35890712

ABSTRACT

Poly-γ-glutamic acid (γ-PGA) is a bio-derived water-soluble, edible, non-immunogenic nylon-like polymer with the biochemical characteristics of a polypeptide. This Bacillus-derived material has great potential for a wide range of applications, from bioremediation to tunable drug delivery systems. In the context of oral care, γ-PGA holds great promise in enamel demineralisation prevention. The salivary protein statherin has previously been shown to protect tooth enamel from acid dissolution and act as a reservoir for free calcium ions within oral cavities. Its superb enamel-binding capacity is attributed to the L-glutamic acid residues of this 5380 Da protein. In this study, γ-PGA was successfully synthesised from Bacillus subtilis natto cultivated on supplemented algae media and standard commercial media. The polymers obtained were tested for their potential to inhibit demineralisation of hydroxyapatite (HAp) when exposed to caries simulating acidic conditions. Formulations presenting 0.1, 0.25, 0.5, 0.75, 1, 2, 3 and 4% (w/v) γ-PGA concentration were assessed to determine the optimal conditions. Our data suggests that both the concentration and the molar mass of the γ-PGA were significant in enamel protection (p = 0.028 and p < 0.01 respectively). Ion Selective Electrode, combined with Fourier Transform Infra-Red studies, were employed to quantify enamel protection capacity of γ-PGA. All concentrations tested showed an inhibitory effect on the dissolution rate of calcium ions from hydroxyapatite, with 1% (wt) and 2% (wt) concentrations being the most effective. The impact of the average molar mass (M) on enamel dissolution was also investigated by employing commercial 66 kDa, 166 kDa, 440 kDa and 520 kDa γ-PGA fractions. All γ-PGA solutions adhered to the surface of HAp with evidence that this remained after 60 min of continuous acidic challenge. Inductively Coupled Plasma analysis showed a significant abundance of calcium ions associated with γ-PGA, which suggests that this material could also act as a responsive calcium delivery system. We have concluded that all γ-PGA samples tested (commercial and algae derived) display enamel protection capacity regardless of their concentration or average molar mass. However, we believe that γ-PGA D/L ratios might affect the binding more than its molar mass.

12.
Foods ; 11(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-37431001

ABSTRACT

The glycaemic index (GI) is used to demonstrate the tendency of foods to increase blood glucose and is thus an important characteristic of newly formulated foods to tackle the rising prevalence of diabetics and associated diseases. The GI of gluten-free biscuits formulated with alternate flours, resistant starch and sucrose replacers was determined using in vivo methods with human subjects. The relationship between in vivo GI values and the predicted glycaemic index (pGI) from the in vitro digestibility-based protocols, generally used by researchers, was established. The in vivo data showed a gradual reduction in GI with increased levels of sucrose substitution by maltitol and inulin with biscuits where sucrose was fully replaced, showing the lowest GI of 33. The correlation between the GI and pGI was food formulation-dependent, even though GI values were lower than the reported pGI. Applying a correction factor to pGI tend to close the gap between the GI and pGI for some formulations but also causes an underestimation of GI for other samples. The results thus suggest that it may not be appropriate to use pGI data to classify food products according to their GI.

13.
Food Chem ; 364: 130386, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34175633

ABSTRACT

Vitamin D and magnesium-calcium carbonate nanoparticles were used to fortify a newly developed healthy chocolate spread formulated with inulin and maltitol as sugar replacers and alternative to palm oil to reduce the concentration of saturated fatty acid. These samples were compared with well-known commercially available chocolate spreads in terms of rheology, polyphenols content and in vitro digestion, sensory attributes and willingness to buy. The fortified chocolate spreads showed comparable if not better acceptability than the current products on the market and over 80% of the participants were inclined to buy and 66% prepared to spend 10 to 15% more money on the product enriched with the three micronutrients. The results also demonstrate that the incorporation of nanoparticles could affect the rheological and physio-chemical properties of the formulations and an appropriate ratio between the fat phase and particles seems an important factor to consider.


Subject(s)
Cacao , Chocolate , Carbohydrates , Humans , Micronutrients , Sugars
14.
Int J Food Sci Nutr ; 67(8): 888-918, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27387656

ABSTRACT

Many nutritional experts and food scientists are interested in developing functional foods containing bioactive agents and many of these health-promoting ingredients may benefit from nano/micro-encapsulation technology. Encapsulation has been proven useful to improve the physical and the chemical stability of bioactive agents, as well as their bioavailability and efficacy, enabling their incorporation into a wide range of formulations aimed to functional food production. There are several reviews concerning nano/micro-encapsulation techniques, but none are focused on the incorporation of the bioactive agents into food matrices. The aim of this paper was to investigate the development of microencapsulated food, taking into account the different bioactive ingredients, the variety of processes, techniques and coating materials that can be used for this purpose.


Subject(s)
Functional Food/analysis , Animals , Biological Availability , Food Technology/methods , Health Promotion , Humans , Micronutrients/administration & dosage , Micronutrients/pharmacokinetics , Nanocapsules/administration & dosage , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL