Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
EMBO Mol Med ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977927

ABSTRACT

In humans, blood Classical CD14+ monocytes contribute to host defense by secreting large amounts of pro-inflammatory cytokines. Their aberrant activity causes hyper-inflammation and life-threatening cytokine storms, while dysfunctional monocytes are associated with 'immunoparalysis', a state of immune hypo responsiveness and reduced pro-inflammatory gene expression, predisposing individuals to opportunistic infections. Understanding how monocyte functions are regulated is critical to prevent these harmful outcomes. We reveal platelets' vital role in the pro-inflammatory cytokine responses of human monocytes. Naturally low platelet counts in patients with immune thrombocytopenia or removal of platelets from healthy monocytes result in monocyte immunoparalysis, marked by impaired cytokine response to immune challenge and weakened host defense transcriptional programs. Remarkably, supplementing monocytes with fresh platelets reverses these conditions. We discovered that platelets serve as reservoirs of key cytokine transcription regulators, such as NF-κB and MAPK p38, and pinpointed the enrichment of platelet NF-κB2 in human monocytes by proteomics. Platelets proportionally restore impaired cytokine production in human monocytes lacking MAPK p38α, NF-κB p65, and NF-κB2. We uncovered a vesicle-mediated platelet-monocyte-propagation of inflammatory transcription regulators, positioning platelets as central checkpoints in monocyte inflammation.

2.
Ann Hematol ; 102(10): 2741-2752, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37592092

ABSTRACT

The approved dose of bosutinib in chronic phase CML is 400 mg QD in first-line and 500 mg QD in later-line treatment. However, given that gastrointestinal (GI) toxicity typically occurs early after treatment initiation, physicians often tend to start therapy with lower doses although this has never been tested systematically in prospective trials in the Western world. The Bosutinib Dose Optimization (BODO) Study, a multicenter phase II study, investigated the tolerability and efficacy of a step-in dosing concept of bosutinib (starting at 300 mg QD) in chronic phase CML patients in 2nd or 3rd line who were intolerant and/or refractory to previous TKI treatment. Of 57 patients included until premature closure of the study due to slow recruitment, 34 (60%) reached the targeted dose level of 500 mg QD following the 2-weekly step-in dosing regimen. While the dosing-in concept failed to reduce GI toxicity (grade II-IV, primary study endpoint) to < 40% (overall rate of 60%; 95% CI: 45-74%), bosutinib treatment (mean dosage: 403 mg/day) showed remarkable efficacy with a cumulative major molecular remission (MMR) rate of 79% (95% CI: 66 to 88%) at month 24. Of thirty patients refractory to previous therapy and not in MMR at baseline, 19 (64%) achieved an MMR during treatment. GI toxicity did not significantly impact on patient-reported outcomes (PRO) and led to treatment discontinuation in only one patient. Overall, the results of our trial support the efficacy and safety of bosutinib after failure of second-generation TKI pre-treatment. Trial registration: NCT02577926.


Subject(s)
Leukemia, Myeloid, Chronic-Phase , Humans , Prospective Studies , Aniline Compounds/adverse effects , Leukemia, Myeloid, Chronic-Phase/drug therapy
4.
Br J Haematol ; 200(5): 643-651, 2023 03.
Article in English | MEDLINE | ID: mdl-36382360

ABSTRACT

Nestin is an intermediate filament protein, which was originally detected in neuroepithelial stem cells. Besides its use as a phenotypic marker of mesenchymal stem cells in the hematopoeitic stem cell niche, the functional interpretation of nestin+ cells remains elusive. We investigated the cellular expression of nestin in bone marrow trephine biopsies of MPN patients, following myeloablation at a stage of hypocellularity during early regeneration. Here, nestin is highly expressed in mature osteocytes, arteriolar endothelial and perivascular cells and small capillaries within the bone marrow space, but not in sinusoid lining cells. This is in stark contrast to nestin expression pattern in myeloproliferative neoplasms that show hypercellularity due to oncogenic driver mutations. Here, nestin is expressed exclusively in endothelial cells of arterioles, but not in osteocytes or small capillaries. Thus, the pattern of nestin expression following myeloablation inversely correlates with cellularity in the bone marrow. This nestin expression pattern is mimicking early postnatal transcriptional programming during bone marrow development. We show that nestin expression in osteocytes occurs across different species following transplant and also in bone marrow metastasis.


Subject(s)
Bone Marrow Neoplasms , Bone Marrow , Humans , Nestin/genetics , Nestin/metabolism , Bone Marrow/metabolism , Endothelial Cells/metabolism , Osteocytes/metabolism , Bone Marrow Neoplasms/metabolism
6.
J Exp Med ; 219(10)2022 10 03.
Article in English | MEDLINE | ID: mdl-35997679

ABSTRACT

Autoimmune vasculitis is a group of life-threatening diseases, whose underlying pathogenic mechanisms are incompletely understood, hampering development of targeted therapies. Here, we demonstrate that patients suffering from anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) showed increased levels of cGAMP and enhanced IFN-I signature. To identify disease mechanisms and potential therapeutic targets, we developed a mouse model for pulmonary AAV that mimics severe disease in patients. Immunogenic DNA accumulated during disease onset, triggering cGAS/STING/IRF3-dependent IFN-I release that promoted endothelial damage, pulmonary hemorrhages, and lung dysfunction. Macrophage subsets played dichotomic roles in disease. While recruited monocyte-derived macrophages were major disease drivers by producing most IFN-ß, resident alveolar macrophages contributed to tissue homeostasis by clearing red blood cells and limiting infiltration of IFN-ß-producing macrophages. Moreover, pharmacological inhibition of STING, IFNAR-I, or its downstream JAK/STAT signaling reduced disease severity and accelerated recovery. Our study unveils the importance of STING/IFN-I axis in promoting pulmonary AAV progression and identifies cellular and molecular targets to ameliorate disease outcomes.


Subject(s)
Interferon Type I , Nucleic Acids , Vasculitis , Animals , Lung , Macrophages , Membrane Proteins/metabolism , Mice , Nucleotidyltransferases
7.
STAR Protoc ; 3(2): 101309, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35496781

ABSTRACT

Activation of innate immune sensors by endogenous DNA and RNA can lead to autoimmune and autoinflammatory diseases. Quantification of the unperturbed phosphoprotein content in immune cells provides insight into the spontaneous activity of immune signaling pathways triggered by nucleic acid recognition. Here, we present a phosphoflow protocol for measuring phosphoproteins in mouse models of autoimmunity that incorporates strategies to preserve native phosphoprotein levels during sample collection and to reliably detect low signaling activity common in chronic disease states. For complete details on the use and execution of this protocol, please refer to Jütte et al. (2021).


Subject(s)
Autoimmune Diseases , Nucleic Acids , Animals , Autoimmune Diseases/genetics , Autoimmunity , Mice , Phosphoproteins , Signal Transduction/physiology
8.
Blood Adv ; 5(17): 3373-3376, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34477817

ABSTRACT

The molecular causes of myeloproliferative neoplasms (MPNs) have not yet been fully elucidated. Approximately 7% to 8% of the patients carry predisposing genetic germline variants that lead to driver mutations, which enhance JAK-STAT signaling. To identify additional predisposing genetic germline variants, we performed whole-exome sequencing in 5 families, each with parent-child or sibling pairs affected by MPNs and carrying the somatic JAK2 V617F mutation. In 4 families, we detected rare germline variants in known tumor predisposition genes of the DNA repair pathway, including the highly penetrant BRCA1 and BRCA2 genes. The identification of an underlying hereditary tumor predisposition is of major relevance for the individual patients as well as for their families in the context of therapeutic options and preventive care. Two patients with essential thrombocythemia or polycythemia vera experienced progression to acute myeloid leukemia, which may suggest a high risk of leukemic transformation in these familial MPNs. Our study demonstrates the relevance of genetic germline diagnostics in elucidating the causes of MPNs and suggests novel therapeutic options (eg, PARP inhibitors) in MPNs. Furthermore, we uncover a broader tumor spectrum upon the detection of a germline mutation in genes of the DNA repair pathway.


Subject(s)
Leukemia, Myeloid, Acute , Myeloproliferative Disorders , BRCA1 Protein/genetics , DNA Repair/genetics , Germ Cells , Humans , Janus Kinase 2/genetics , Myeloproliferative Disorders/genetics
9.
iScience ; 24(8): 102833, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34368651

ABSTRACT

Intercellular transmission of the second messenger 2',3'-cGAMP, synthesized by the viral DNA sensor cGAMP synthase (cGAS), is a potent mode of bystander activation during host defense. However, whether this mechanism also contributes to cGAS-dependent autoimmunity remains unknown. Here, using a murine bone marrow transplantation strategy, we demonstrate that, in Trex1 -/- -associated autoimmunity, cGAMP shuttling from radioresistant to immune cells induces NF-κB activation, interferon regulatory factor 3 (IRF3) phosphorylation, and subsequent interferon signaling. cGAMP travel prevented myeloid cell and lymphocyte death, promoting their accumulation in secondary lymphoid tissue. Nonetheless, it did not stimulate B cell differentiation into autoantibody-producing plasmablasts or aberrant T cell priming. Although cGAMP-mediated bystander activation did not induce spontaneous organ disease, it did trigger interface dermatitis after UV light exposure, similar to cutaneous lupus erythematosus. These findings reveal that, in Trex1-deficiency, intercellular cGAMP transfer propagates cGAS signaling and, under conducive conditions, causes tissue inflammation.

10.
Ann Hematol ; 100(1): 97-104, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33104881

ABSTRACT

Bone marrow (BM) fibrosis in myeloproliferative neoplasms (MPNs) is associated with a poor prognosis. The development of myelofibrosis and differentiation of mesenchymal stromal cells to profibrotic myofibroblasts depends on macrophages. Here, we compared macrophage frequencies in BM biopsies of MPN patients and controls (patients with non-neoplastic processes), including primary myelofibrosis (PMF, n = 18), essential thrombocythemia (ET, n = 14), polycythemia vera (PV, n = 12), and Philadelphia chromosome-positive chronic myeloid leukemia (CML, n = 9). In PMF, CD68-positive macrophages were greatly increased compared to CML (p = 0.017) and control BM (p < 0.001). Similar findings were observed by CD163 staining (PMF vs. CML: p = 0.017; PMF vs. control: p < 0.001). Moreover, CD68-positive macrophages were increased in PV compared with ET (p = 0.009) and reactive cases (p < 0.001). PMF had higher frequencies of macrophages than PV (CD68: p < 0.001; CD163: p < 0.001) and ET (CD68: p < 0.001; CD163: p < 0.001). CD163 and CD68 were often co-expressed in macrophages with stellate morphology in Philadelphia chromosome-negative MPN, resulting in a sponge-like reticular network that may be a key regulator of unbalanced hematopoiesis in the BM space and may explain differences in cellularity and clinical course.


Subject(s)
Bone Marrow/pathology , Macrophages/pathology , Myeloproliferative Disorders/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , Humans , Middle Aged , Neoplasm Grading/methods , Polycythemia Vera/pathology , Primary Myelofibrosis/pathology , Thrombocythemia, Essential/pathology , Young Adult
12.
Immunity ; 42(3): 552-65, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25786178

ABSTRACT

The inducible T cell costimulator (ICOS) is a potent promoter of organ inflammation in murine lupus. ICOS stimulates T follicular helper cell differentiation in lymphoid tissue, suggesting that it might drive autoimmunity by enhancing autoantibody production. Yet the pathogenic relevance of this mechanism remains unclear. It is also unknown whether other ICOS-induced processes might contribute to lupus pathology. Here we show that selective ablation of ICOS ligand (ICOSL) in CD11c(+) cells, but not in B cells, dramatically ameliorates kidney and lung inflammation in lupus-prone MRL.Fas(lpr) mice. Autoantibody formation was largely unaffected by ICOSL deficiency in CD11c(+) cells. However, ICOSL display by CD11c(+) cells in inflamed organs had a nonredundant role in protecting invading T cells from apoptosis by elevating activity of the PI3K-Akt signaling pathway, thereby facilitating T cell accrual. These findings reveal a mechanism that locally sustains organ inflammation in lupus.


Subject(s)
CD11c Antigen/immunology , Inducible T-Cell Co-Stimulator Ligand/immunology , Inducible T-Cell Co-Stimulator Protein/immunology , Kidney/immunology , Lupus Nephritis/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Apoptosis , Autoantibodies/biosynthesis , CD11c Antigen/genetics , Cell Differentiation , Female , Gene Expression Regulation , Humans , Inducible T-Cell Co-Stimulator Ligand/deficiency , Inducible T-Cell Co-Stimulator Ligand/genetics , Inducible T-Cell Co-Stimulator Protein/genetics , Kidney/pathology , Lung/immunology , Lung/pathology , Lupus Nephritis/genetics , Lupus Nephritis/pathology , Mice, Transgenic , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Signal Transduction , T-Lymphocytes, Helper-Inducer/pathology
13.
Nat Biotechnol ; 32(4): 364-72, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24633240

ABSTRACT

Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.


Subject(s)
Immunity, Innate/genetics , Immunity, Innate/immunology , Killer Cells, Natural , Myeloid Cells , Animals , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/physiology , Leukemic Infiltration/genetics , Leukemic Infiltration/immunology , Mice , Mice, Transgenic , Myeloid Cells/immunology , Myeloid Cells/physiology , Neoplasms, Experimental , Transplantation, Heterologous
14.
Immunity ; 38(3): 528-40, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23499488

ABSTRACT

Detection of self nucleic acids by Toll-like receptors (TLR) preciptates autoimmune diseases, including systemic lupus erythematosus (SLE). It remains unknown how TLR signals in specific cell types contribute to distinct manifestations of SLE. Here, we demonstrate that formation of anti-nuclear antibodies in MRL.Fas(lpr) mice entirely depends on the TLR signaling adaptor MyD88 in B cells. Further, MyD88 deficiency in B cells ameliorated nephritis, including antibody-independent interstitial T cell infiltrates, suggesting that nucleic acid-specific B cells activate nephrotoxic T cells. Surprisingly, MyD88 deletion in dendritic cells (DCs) did not affect nephritis, despite the importance of DCs in renal inflammation. In contrast, MyD88 in DCs was critical for dermatitis, revealing a separate pathogenetic mechanism. DC-expressed MyD88 promoted interferon-α production by plasmacytoid DCs, which was associated with Death domain-associated protein 6 upregulation and B lymphopenia. Our findings thus reveal unique immunopathological consequences of MyD88 signaling in B cells and DCs in lupus.


Subject(s)
B-Lymphocytes/immunology , Dendritic Cells/immunology , Lupus Erythematosus, Systemic/immunology , Myeloid Differentiation Factor 88/immunology , Signal Transduction/immunology , Animals , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , Autoimmunity/genetics , Autoimmunity/immunology , B-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Line, Tumor , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Lupus Nephritis/genetics , Lupus Nephritis/immunology , Lupus Nephritis/metabolism , Male , Mice , Mice, Knockout , Mice, Transgenic , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Th1 Cells/immunology , Th1 Cells/metabolism
15.
J Immunol ; 188(2): 678-85, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22156495

ABSTRACT

B cells contribute to the pathogenesis of chronic autoimmune disorders, like systemic lupus erythematosus (SLE), via multiple effector functions. However, B cells are also implicated in regulating SLE and other autoimmune syndromes via release of IL-10. B cells secreting IL-10 were termed "Bregs" and were proposed as a separate subset of cells, a concept that remains controversial. The balance between pro- and anti-inflammatory effects could determine the success of B cell-targeted therapies for autoimmune disorders; therefore, it is pivotal to understand the significance of B cell-secreted IL-10 in spontaneous autoimmunity. By lineage-specific deletion of Il10 from B cells, we demonstrated that B cell-derived IL-10 is ineffective in suppressing the spontaneous activation of self-reactive B and T cells during lupus. Correspondingly, severity of organ disease and survival rates in mice harboring Il10-deficient B cells are unaltered. Genetic marking of cells that transcribe Il10 illustrated that the pool of IL-10-competent cells is dominated by CD4 T cells and macrophages. IL-10-competent cells of the B lineage are rare in vivo and, among them, short-lived plasmablasts have the highest frequency, suggesting an activation-driven, rather than lineage-driven, phenotype. Putative Breg phenotypic subsets, such as CD1d(hi)CD5(+) and CD21(hi)CD23(hi) B cells, are not enriched in Il10 transcription. These genetic studies demonstrated that, in a spontaneous model of murine lupus, IL-10-dependent B cell regulation does not restrain disease and, thus, the pathogenic effects of B cells are not detectably counterbalanced by their IL-10-dependent regulatory functions.


Subject(s)
Autoimmune Diseases/immunology , B-Lymphocyte Subsets/immunology , Interleukin-10/physiology , Mice, Inbred MRL lpr/immunology , Animals , Autoimmune Diseases/genetics , B-Lymphocyte Subsets/metabolism , Chronic Disease , Interleukin-10/deficiency , Interleukin-10/metabolism , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Mice , Mice, Inbred C57BL , Mice, Inbred MRL lpr/genetics , Mice, Knockout , Mice, Transgenic , Species Specificity , Syndrome , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , fas Receptor/biosynthesis
16.
J Immunol ; 187(7): 3888-94, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21873531

ABSTRACT

B cells play important roles in autoimmune diseases ranging from multiple sclerosis to rheumatoid arthritis. B cells have also long been considered central players in systemic lupus erythematosus. However, anti-CD20-mediated B cell depletion was not effective in two clinical lupus studies, whereas anti-B lymphocyte stimulator, which inhibits B cell survival, was effective. Others and we previously found that anti-CD20-based depletion was surprisingly ineffective in tissues of lupus-prone mice, but that persistent high doses eventually led to depletion and ameliorated lupus. Lupus patients might also have incomplete depletion, as suggested in several studies, and which could have led to therapeutic failure. In this study, we investigated the mechanism of resistance to Ab-mediated cellular depletion in murine lupus. B cells from lupus-prone mice were easily depleted when transferred into normal environments or in lupus-prone mice that lacked serum Ig. Serum from lupus-prone mice transferred depletion resistance, with the active component being IgG. Because depletion is FcγR-dependent, we assayed macrophages and neutrophils exposed to lupus mouse serum, showing that they are impaired in IgG-mediated phagocytosis. We conclude that depletion resistance is an acquired, reversible phagocytic defect depending on exposure to lupus serum IgG. These results have implications for optimizing and monitoring cellular depletion therapy.


Subject(s)
B-Lymphocytes/immunology , Immunoglobulin G/immunology , Lupus Erythematosus, Systemic/immunology , Lymphocyte Depletion , Phagocytosis/immunology , Animals , Antibodies, Monoclonal, Murine-Derived/pharmacology , Antigens, CD20/immunology , Antirheumatic Agents/pharmacology , Cell Separation , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Immunoglobulin G/blood , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/therapy , Lymphocyte Depletion/methods , Mice , Mice, Inbred BALB C , Mice, Inbred MRL lpr , Mice, Transgenic , Rituximab
17.
Immunity ; 33(6): 967-78, 2010 Dec 14.
Article in English | MEDLINE | ID: mdl-21167752

ABSTRACT

Dendritic cells (DCs) initiate and control the adaptive immune response against infections. However, their contributions to the anti-self adaptive immune response in autoimmune disorders like systemic lupus erythematosus are uncertain. By constitutively deleting DCs in MRL.Fas(lpr) mice, we show that they have complex roles in murine lupus. The net effect of DC deletion was to ameliorate disease. DCs were crucial for the expansion and differentiation of T cells but, surprisingly, not required for their initial activation. Correspondingly, kidney interstitial infiltrates developed in the absence of DCs, but failed to progress. DC deletion concomitantly decreased inflammatory and regulatory T cell numbers. Unexpectedly, plasmablast numbers and autoantibody concentrations depended on DCs, in contrast to total serum immunoglobulin concentrations, suggesting an effect of DCs on extrafollicular humoral responses. These findings reveal that DCs operate in unanticipated ways in murine lupus and validate them as a potential therapeutic target in autoimmunity.


Subject(s)
B-Lymphocytes/metabolism , Dendritic Cells/metabolism , Lupus Erythematosus, Systemic/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Autoantibodies/biosynthesis , Autoantibodies/genetics , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Blood Component Removal , Cell Differentiation , Cell Movement , Dendritic Cells/immunology , Dendritic Cells/pathology , Disease Models, Animal , Humans , Immunoglobulin Class Switching , Interferon-gamma/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Inbred MRL lpr , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...