Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Acta Neuropathol Commun ; 11(1): 145, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679832

ABSTRACT

Among transmissible spongiform encephalopathies or prion diseases affecting humans, sporadic forms such as sporadic Creutzfeldt-Jakob disease are the vast majority. Unlike genetic or acquired forms of the disease, these idiopathic forms occur seemingly due to a random event of spontaneous misfolding of the cellular PrP (PrPC) into the pathogenic isoform (PrPSc). Currently, the molecular mechanisms that trigger and drive this event, which occurs in approximately one individual per million each year, remain completely unknown. Modelling this phenomenon in experimental settings is highly challenging due to its sporadic and rare occurrence. Previous attempts to model spontaneous prion misfolding in vitro have not been fully successful, as the spontaneous formation of prions is infrequent and stochastic, hindering the systematic study of the phenomenon. In this study, we present the first method that consistently induces spontaneous misfolding of recombinant PrP into bona fide prions within hours, providing unprecedented possibilities to investigate the mechanisms underlying sporadic prionopathies. By fine-tuning the Protein Misfolding Shaking Amplification method, which was initially developed to propagate recombinant prions, we have created a methodology that consistently produces spontaneously misfolded recombinant prions in 100% of the cases. Furthermore, this method gives rise to distinct strains and reveals the critical influence of charged surfaces in this process.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prions , Humans , Magnetic Resonance Imaging , Tremor
2.
Cell Tissue Res ; 392(1): 33-46, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36929219

ABSTRACT

While much of what we know about the general principles of protein-based information transfer derives from studies of experimentally adapted rodent prions, these laboratory strains are limited in their ability to recapitulate features of human and animal prions and the diseases they produce. Here, we review how recent approaches using genetically modified mice have informed our understanding of naturally occurring prion diseases, their strain properties, and the factors controlling their transmission and evolution. In light of the increasing importance of chronic wasting disease, the application of mouse transgenesis to study this burgeoning and highly contagious prion disorder, in particular recent insights derived from gene-targeting approaches, will be a major focus of this review.


Subject(s)
Deer , Prion Diseases , Prions , Wasting Disease, Chronic , Mice , Animals , Humans , Mice, Transgenic , Prion Diseases/genetics , Prions/genetics , Gene Targeting , Disease Models, Animal
3.
Emerg Infect Dis ; 29(2): 323-332, 2023 02.
Article in English | MEDLINE | ID: mdl-36692340

ABSTRACT

Our previous studies using gene-targeted mouse models of chronic wasting disease (CWD) demonstrated that Norway and North America cervids are infected with distinct prion strains that respond differently to naturally occurring amino acid variation at residue 226 of the prion protein. Here we performed transmissions in gene-targeted mice to investigate the properties of prions causing newly emergent CWD in moose in Finland. Although CWD prions from Finland and Norway moose had comparable responses to primary structural differences at residue 226, other distinctive criteria, including transmission kinetics, patterns of neuronal degeneration, and conformational features of prions generated in the brains of diseased mice, demonstrated that the strain properties of Finland moose CWD prions are different from those previously characterized in Norway CWD. Our findings add to a growing body of evidence for a diverse portfolio of emergent strains in Nordic countries that are etiologically distinct from the comparatively consistent strain profile of North America CWD.


Subject(s)
Deer , Prions , Wasting Disease, Chronic , Animals , Mice , Prions/genetics , Wasting Disease, Chronic/epidemiology , Finland/epidemiology , Prion Proteins/genetics
5.
J Biol Chem ; 298(4): 101834, 2022 04.
Article in English | MEDLINE | ID: mdl-35304100

ABSTRACT

Chronic wasting disease (CWD) is an invariably fatal prion disease affecting cervid species worldwide. Prions can manifest as distinct strains that can influence disease pathology and transmission. CWD is profoundly lymphotropic, and most infected cervids likely shed peripheral prions replicated in lymphoid organs. However, CWD is a neurodegenerative disease, and most research on prion strains has focused on neurogenic prions. Thus, a knowledge gap exists comparing neurogenic prions to lymphogenic prions. In this study, we compared prions from the obex and lymph nodes of naturally exposed white-tailed deer to identify potential biochemical strain differences. Here, we report biochemical evidence of strain differences between the brain and lymph node from these animals. Conformational stability assays, glycoform ratio analyses, and immunoreactivity scanning across the structured domain of the prion protein that refolds into the amyloid aggregate of the infectious prion reveal significantly more structural and glycoform variation in lymphogenic prions than neurogenic prions. Surprisingly, we observed greater biochemical differences among neurogenic prions than lymphogenic prions across individuals. We propose that the lymphoreticular system propagates a diverse array of prions from which the brain selects a more restricted pool of prions that may be quite different than those from another individual of the same species. Future work should examine the biological and zoonotic impact of these biochemical differences and examine more cervids from multiple locations to determine if these differences are conserved across species and locations.


Subject(s)
Deer , Prions , Wasting Disease, Chronic , Animals , Prions/chemistry , Prions/metabolism , Wasting Disease, Chronic/physiopathology
6.
J Infect Dis ; 225(3): 542-551, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34302479

ABSTRACT

BACKGROUND: Chronic wasting disease (CWD) is a rapidly spreading prion disorder affecting various species of wild and captive cervids. The risk that CWD poses to cohabiting animals or more importantly to humans is largely unknown. METHODS: In this study, we investigated differences in the capacity of CWD isolates obtained from 6 different cervid species to induce prion conversion in vitro by protein misfolding cyclic amplification. We define and quantify spillover and zoonotic potential indices as the efficiency by which CWD prions sustain prion generation in vitro at expenses of normal prion proteins from various mammals and human, respectively. RESULTS: Our data suggest that reindeer and red deer from Norway could be the most transmissible CWD prions to other mammals, whereas North American CWD prions were more prone to generate human prions in vitro. CONCLUSIONS: Our results suggest that Norway and North American CWD prions correspond to different strains with distinct spillover and zoonotic potentials.


Subject(s)
Deer , Prions , Wasting Disease, Chronic , Animals , Deer/metabolism , Humans , North America/epidemiology , Norway , Prions/metabolism , Wasting Disease, Chronic/metabolism
7.
PLoS Pathog ; 17(7): e1009748, 2021 07.
Article in English | MEDLINE | ID: mdl-34310663

ABSTRACT

Prions are infectious proteins causing fatal, transmissible neurodegenerative diseases of animals and humans. Replication involves template-directed refolding of host encoded prion protein, PrPC, by its infectious conformation, PrPSc. Following its discovery in captive Colorado deer in 1967, uncontrollable contagious transmission of chronic wasting disease (CWD) led to an expanded geographic range in increasing numbers of free-ranging and captive North American (NA) cervids. Some five decades later, detection of PrPSc in free-ranging Norwegian (NO) reindeer and moose marked the first indication of CWD in Europe. To assess the properties of these emergent NO prions and compare them with NA CWD we used transgenic (Tg) and gene targeted (Gt) mice expressing PrP with glutamine (Q) or glutamate (E) at residue 226, a variation in wild type cervid PrP which influences prion strain selection in NA deer and elk. Transmissions of NO moose and reindeer prions to Tg and Gt mice recapitulated the characteristic features of CWD in natural hosts, revealing novel prion strains with disease kinetics, neuropathological profiles, and capacities to infect lymphoid tissues and cultured cells that were distinct from those causing NA CWD. In support of strain variation, PrPSc conformers comprising emergent NO moose and reindeer CWD were subject to selective effects imposed by variation at residue 226 that were different from those controlling established NA CWD. Transmission of particular NO moose CWD prions in mice expressing E at 226 resulted in selection of a kinetically optimized conformer, subsequent transmission of which revealed properties consistent with NA CWD. These findings illustrate the potential for adaptive selection of strain conformers with improved fitness during propagation of unstable NO prions. Their potential for contagious transmission has implications for risk analyses and management of emergent European CWD. Finally, we found that Gt mice expressing physiologically controlled PrP levels recapitulated the lymphotropic properties of naturally occurring CWD strains resulting in improved susceptibilities to emergent NO reindeer prions compared with over-expressing Tg counterparts. These findings underscore the refined advantages of Gt models for exploring the mechanisms and impacts of strain selection in peripheral compartments during natural prion transmission.


Subject(s)
PrPSc Proteins/genetics , Prion Proteins/genetics , Wasting Disease, Chronic/genetics , Wasting Disease, Chronic/transmission , Animals , Animals, Genetically Modified , Deer , Mice , North America , Norway
8.
Proc Natl Acad Sci U S A ; 117(49): 31417-31426, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33229531

ABSTRACT

Chronic wasting disease (CWD) is a relentless epidemic disorder caused by infectious prions that threatens the survival of cervid populations and raises increasing public health concerns in North America. In Europe, CWD was detected for the first time in wild Norwegian reindeer (Rangifer tarandus) and moose (Alces alces) in 2016. In this study, we aimed at comparing the strain properties of CWD prions derived from different cervid species in Norway and North America. Using a classical strain typing approach involving transmission and adaptation to bank voles (Myodes glareolus), we found that prions causing CWD in Norway induced incubation times, neuropathology, regional deposition of misfolded prion protein aggregates in the brain, and size of their protease-resistant core, different from those that characterize North American CWD. These findings show that CWD prion strains affecting Norwegian cervids are distinct from those found in North America, implying that the highly contagious North American CWD prions are not the proximate cause of the newly discovered Norwegian CWD cases. In addition, Norwegian CWD isolates showed an unexpected strain variability, with reindeer and moose being caused by different CWD strains. Our findings shed light on the origin of emergent European CWD, have significant implications for understanding the nature and the ecology of CWD in Europe, and highlight the need to assess the zoonotic potential of the new CWD strains detected in Europe.


Subject(s)
Arvicolinae/physiology , Prions/metabolism , Wasting Disease, Chronic/epidemiology , Adaptation, Physiological , Animals , Brain/pathology , Nerve Degeneration/complications , Nerve Degeneration/pathology , North America/epidemiology , Norway/epidemiology , Phenotype , Species Specificity , Wasting Disease, Chronic/complications , Wasting Disease, Chronic/transmission
9.
J Neurotrauma ; 37(21): 2268-2276, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32718209

ABSTRACT

Small molecule inhibitors of calcium-dependent proteases, calpains (CAPNs), protect against neurodegeneration induced by a variety of insults including excitotoxicity and spinal cord injury (SCI). Many of these compounds, however, also inhibit other proteases, which has made it difficult to evaluate the contribution of calpains to neurodegeneration. Calpastatin is a highly specific endogenous inhibitor of classical calpains, including CAPN1 and CAPN2. In the present study, we utilized transgenic mice that overexpress human calpastatin under the prion promoter (PrP-hCAST) to evaluate the hypothesis that calpastatin overexpression protects against excitotoxic hippocampal injury and contusive SCI. The PrP-hCAST organotypic hippocampal slice cultures showed reduced neuronal death and reduced calpain-dependent proteolysis (α-spectrin breakdown production, 145 kDa) at 24 h after N-methyl-D-aspartate (NMDA) injury compared with the wild-type (WT) cultures (n = 5, p < 0.05). The PrP-hCAST mice (n = 13) displayed a significant improvement in locomotor function at one and three weeks after contusive SCI compared with the WT controls (n = 9, p < 0.05). Histological assessment of lesion volume and tissue sparing, performed on the same animals used for behavioral analysis, revealed that calpastatin overexpression resulted in a 30% decrease in lesion volume (p < 0.05) and significant increases in tissue sparing, white matter sparing, and gray matter sparing at four weeks post-injury compared with WT animals. Calpastatin overexpression reduced α-spectrin breakdown by 51% at 24 h post-injury, compared with WT controls (p < 0.05, n = 3/group). These results provide support for the hypothesis that sustained calpain-dependent proteolysis contributes to pathological deficits after excitotoxic injury and traumatic SCI.


Subject(s)
Calcium-Binding Proteins/metabolism , Hippocampus/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Animals , Hippocampus/pathology , Humans , Locomotion/physiology , Mice , Mice, Transgenic
10.
J Biol Chem ; 295(30): 10420-10433, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32513872

ABSTRACT

The causative factors underlying conformational conversion of cellular prion protein (PrPC) into its infectious counterpart (PrPSc) during prion infection remain undetermined, in part because of a lack of monoclonal antibodies (mAbs) that can distinguish these conformational isoforms. Here we show that the anti-PrP mAb PRC7 recognizes an epitope that is shielded from detection when glycans are attached to Asn-196. We observed that whereas PrPC is predisposed to full glycosylation and is therefore refractory to PRC7 detection, prion infection leads to diminished PrPSc glycosylation at Asn-196, resulting in an unshielded PRC7 epitope that is amenable to mAb recognition upon renaturation. Detection of PRC7-reactive PrPSc in experimental and natural infections with various mouse-adapted scrapie strains and with prions causing deer and elk chronic wasting disease and transmissible mink encephalopathy uncovered that incomplete PrPSc glycosylation is a consistent feature of prion pathogenesis. We also show that interrogating the conformational properties of the PRC7 epitope affords a direct means of distinguishing different prion strains. Because the specificity of our approach for prion detection and strain discrimination relies on the extent to which N-linked glycosylation shields or unshields PrP epitopes from antibody recognition, it dispenses with the requirement for additional standard manipulations to distinguish PrPSc from PrPC, including evaluation of protease resistance. Our findings not only highlight an innovative and facile strategy for prion detection and strain differentiation, but are also consistent with a mechanism of prion replication in which structural instability of incompletely glycosylated PrP contributes to the conformational conversion of PrPC to PrPSc.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/chemistry , Epitopes/chemistry , PrPC Proteins/chemistry , Animals , Cell Line , Epitopes/metabolism , Glycosylation , PrPC Proteins/metabolism , Rabbits
11.
Prion ; 14(1): 31-41, 2020 12.
Article in English | MEDLINE | ID: mdl-31950869

ABSTRACT

Adult neurogenesis, analogous to early development, is comprised of several, often concomitant, processes including proliferation, differentiation, and formation of synaptic connections. However, due to continual, asynchronous turn-over, newly-born adult olfactory sensory neurons (OSNs) must integrate into existing circuitry. Additionally, OSNs express high levels of cellular prion protein (PrPC), particularly in the axon, which implies a role in this cell type. The cellular prion has been shown to be important for proper adult OSN neurogenesis primarily by stabilizing mature olfactory neurons within this circuitry. However, the role of PrPC on each specific adult neurogenic processes remains to be investigated in detail. To tease out the subtle effects of prion protein expression level, a large population of regenerating neurons must be investigated. The thyroid drug methimazole (MTZ) causes nearly complete OSN loss in rodents and is used as a model of acute olfactory injury, providing a mechanism to induce synchronized OSN regeneration. This study investigated the effect of PrPC on adult neurogenesis after acute nasotoxic injury. Altered PrPC levels affected olfactory sensory epithelial (OSE) regeneration, cell proliferation, and differentiation. Attempts to investigate the role of PrPC level on axon regeneration did not support previous studies, and glomerular targeting did not recover to vehicle-treated levels, even by 20 weeks. Together, these studies demonstrate that the cellular prion protein is critical for regeneration of neurons, whereby increased PrPC levels promote early neurogenesis, and that lack of PrPC delays the regeneration of this tissue after acute injury.


Subject(s)
Nerve Regeneration/physiology , Olfactory Receptor Neurons/pathology , Prion Proteins/metabolism , Acute Disease , Animals , Axons/drug effects , Axons/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Male , Methimazole/toxicity , Mice, Transgenic , Nerve Regeneration/drug effects , Neurogenesis/drug effects , Olfactory Mucosa/drug effects , Olfactory Mucosa/pathology , Olfactory Receptor Neurons/drug effects
12.
13.
PLoS Pathog ; 15(10): e1008117, 2019 10.
Article in English | MEDLINE | ID: mdl-31644574

ABSTRACT

The resolution of the three-dimensional structure of infectious prions at the atomic level is pivotal to understand the pathobiology of Transmissible Spongiform Encephalopathies (TSE), but has been long hindered due to certain particularities of these proteinaceous pathogens. Difficulties related to their purification from brain homogenates of disease-affected animals were resolved almost a decade ago by the development of in vitro recombinant prion propagation systems giving rise to highly infectious recombinant prions. However, lack of knowledge about the molecular mechanisms of the misfolding event and the complexity of systems such as the Protein Misfolding Cyclic Amplification (PMCA), have limited generating the large amounts of homogeneous recombinant prion preparations required for high-resolution techniques such as solid state Nuclear Magnetic Resonance (ssNMR) imaging. Herein, we present a novel recombinant prion propagation system based on PMCA that substitutes sonication with shaking thereby allowing the production of unprecedented amounts of multi-labeled, infectious recombinant prions. The use of specific cofactors, such as dextran sulfate, limit the structural heterogeneity of the in vitro propagated prions and makes possible, for the first time, the generation of infectious and likely homogeneous samples in sufficient quantities for studies with high-resolution structural techniques as demonstrated by the preliminary ssNMR spectrum presented here. Overall, we consider that this new method named Protein Misfolding Shaking Amplification (PMSA), opens new avenues to finally elucidate the three-dimensional structure of infectious prions.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Prion Proteins/metabolism , Prions/metabolism , Animals , Arvicolinae , Central Nervous System/pathology , Dextran Sulfate/pharmacology , Disease Models, Animal , Mice, Transgenic , Prion Diseases/pathology , Protein Structure, Tertiary , Proteostasis Deficiencies/pathology
14.
J Biol Chem ; 294(37): 13619-13628, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31320473

ABSTRACT

Prion diseases are a group of incurable neurodegenerative disorders that affect humans and animals via infection with proteinaceous particles called prions. Prions are composed of PrPSc, a misfolded version of the cellular prion protein (PrPC). During disease progression, PrPSc replicates by interacting with PrPC and inducing its conversion to PrPSc As PrPSc accumulates, cellular stress mechanisms are activated to maintain cellular proteostasis, including increased protein chaperone levels. However, the exact roles of several of these chaperones remain unclear. Here, using various methodologies to monitor prion replication (i.e. protein misfolding cyclic amplification and cellular and animal infectivity bioassays), we studied the potential role of the molecular chaperone heat shock protein 70 (HSP70) in prion replication in vitro and in vivo Our results indicated that pharmacological induction of the heat shock response in cells chronically infected with prions significantly decreased PrPSc accumulation. We also found that HSP70 alters prion replication in vitro More importantly, prion infection of mice lacking the genes encoding stress-induced HSP70 exhibited accelerated prion disease progression compared with WT mice. In parallel with HSP70 being known to respond to endogenous and exogenous stressors such as heat, infection, toxicants, and ischemia, our results indicate that HSP70 may also play an important role in suppressing or delaying prion disease progression, opening opportunities for therapeutic intervention.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Prion Diseases/metabolism , Animals , Brain/metabolism , Brain/pathology , Disease Progression , Endoplasmic Reticulum/physiology , Endoplasmic Reticulum Stress/physiology , Female , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Prion Proteins/metabolism , Prions/metabolism , Protein Folding
15.
Proc Natl Acad Sci U S A ; 116(25): 12478-12487, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31147460

ABSTRACT

Although the unifying hallmark of prion diseases is CNS neurodegeneration caused by conformational corruption of host prion protein (PrP) to its infective counterpart, contagious transmission of chronic wasting disease (CWD) results from shedding of prions produced at high titers in the periphery of diseased cervids. While deer and elk PrP primary structures are equivalent except at residue 226, which is glutamate in elk and glutamine in deer, the effect of this difference on CWD pathogenesis is largely unknown. Using a gene-targeting approach where the mouse PrP coding sequence was replaced with elk or deer PrP, we show that the resulting GtE226 and GtQ226 mice had distinct kinetics of disease onset, prion conformations, and distributions of prions in the brains of diseased mice following intracerebral CWD challenge. These findings indicate that amino acid differences at PrP residue 226 dictate the selection and propagation of divergent strains in deer and elk with CWD. Because prion strain properties largely dictate host-range potential, our findings suggest that prion strains from elk and deer pose distinct risks to sympatric species or humans exposed to CWD. GtE226 and GtQ226 mice were also highly susceptible to CWD prions following intraperitoneal and oral exposures, a characteristic that stood in stark contrast to previously produced transgenic models. Remarkably, disease transmission was effective when infected mice were cohoused with naïve cagemates. Our findings indicate that gene-targeted mice provide unprecedented opportunities to accurately investigate CWD peripheral pathogenesis, CWD strains, and mechanisms of horizontal CWD transmission.


Subject(s)
Gene Targeting , Prion Proteins/chemistry , Prion Proteins/genetics , Wasting Disease, Chronic/genetics , Amino Acid Substitution , Animals , Deer , Gene Regulatory Networks , Mice , Mice, Transgenic , Protein Conformation , Species Specificity , Wasting Disease, Chronic/transmission
16.
Sci Rep ; 9(1): 4847, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30890734

ABSTRACT

Advances in biotechnology have led to the development of a number of biological therapies for the treatment of diverse human diseases. Since these products may contain or are made using human or animal (e.g. cattle) derived materials, it is crucial to test their safety by ensuring the absence of infectious agents; specifically prions, which are highly resilient to elimination and produce fatal diseases in humans. Many cases of iatrogenic Creutzfeldt-Jakob disease have been caused by the use of biological materials (e.g. human growth hormone) contaminated with prions. For this reason, it is important to screen cells and biological materials for the presence of prions. Here we show the utility of the Protein Misfolding Cyclic Amplification (PMCA) technology as a screening tool for the presence of human (vCJD) and bovine (BSE) prions in a human cell therapy product candidate. First, we demonstrated the sensitivity of PMCA to detect a single cell infected with prions. For these experiments, we used RKM7 cells chronically infected with murine RML prions. Serial dilutions of an infected cell culture showed that PMCA enabled prion amplification from a sample comprised of only one cell. Next, we determined that PMCA performance was robust and uncompromised by the spiking of large quantities of uninfected cells into the reaction. Finally, to demonstrate the practical application of this technology, we analyzed a human cell line being developed for therapeutic use and found it to be PMCA-negative for vCJD and BSE prions. Our findings demonstrate that the PMCA technology has unparalleled sensitivity and specificity for the detection of prions, making it an ideal quality control procedure in the production of biological therapeutics.


Subject(s)
Biological Products/pharmacology , Biotechnology/methods , Creutzfeldt-Jakob Syndrome/drug therapy , Prions/drug effects , Animals , Cell Line , Humans , Protein Folding/drug effects , Rabbits , Sensitivity and Specificity
17.
Handb Clin Neurol ; 153: 135-151, 2018.
Article in English | MEDLINE | ID: mdl-29887133

ABSTRACT

Chronic wasting disease (CWD) is a relatively new and burgeoning prion epidemic of deer, elk, reindeer, and moose, which are members of the cervid family. While the disease was first described in captive deer, its subsequent discovery in various species of free-ranging animals makes it the only currently recognized prion disorder of both wild and farmed animals. In addition to its expanding range of host species, CWD continues to spread from North America to new geographic areas, including South Korea, and most recently Norway, marking the first time this disease was detected in Europe. Its unparalleled efficiency of contagious transmission, combined with high densities of deer in certain areas, complicates strategies for controlling CWD, raising concerns about its potential for spread to new species. Because there is a high prevalence of CWD in deer and elk, which are commonly hunted and consumed by humans, and since prions from cattle with bovine spongiform encephalopathy have been transmitted to humans causing variant Creutzfeldt-Jakob disease, the possibility of zoonotic transmission of CWD is particularly concerning. Here we review the clinical and pathologic features of CWD and its disturbing epidemiology, and discuss features that affect its transmission, including genetic susceptibility, pathogenesis, and agent strain variability. Finally, we discuss evidence that speaks to the potential for zoonotic transmission of this emerging disease.


Subject(s)
Deer , Prions/genetics , Wasting Disease, Chronic/genetics , Wasting Disease, Chronic/transmission , Animals , Genetic Predisposition to Disease , Humans , Prion Diseases/classification , Prion Diseases/epidemiology , Prion Diseases/transmission , Wasting Disease, Chronic/epidemiology , Wasting Disease, Chronic/metabolism
18.
J Gen Virol ; 99(5): 753-758, 2018 05.
Article in English | MEDLINE | ID: mdl-29580373

ABSTRACT

The prevalence, host range and geographical bounds of chronic wasting disease (CWD), the prion disease of cervids, are expanding. Horizontal transmission likely contributes the majority of new CWD cases, but the mechanism by which prions are transmitted among CWD-affected cervids remains unclear. To address the extent to which prion amplification in peripheral tissues contributes to contagious transmission, we assessed the prion levels in central nervous and lymphoreticular system tissues in white-tailed deer (Odocoileus virginianus), red deer (Cervus elaphus elaphus) and elk (Cervus canadensis). Using real-time quaking-induced conversion, cervid prion cell assay and transgenic mouse bioassay, we found that the retropharyngeal lymph nodes of red deer, white-tailed deer and elk contained similar prion titres to brain from the same individuals. We propose that marked lymphotropism is essential for the horizontal transmission of prion diseases and postulate that shed CWD prions are produced in the periphery.


Subject(s)
Disease Transmission, Infectious/veterinary , Prions/pathogenicity , Wasting Disease, Chronic/pathology , Animals , Brain/pathology , Deer , Lymphoid Tissue/pathology , Mice , Mice, Transgenic , Prions/isolation & purification , Wasting Disease, Chronic/transmission
19.
Dev Biol ; 438(1): 23-32, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29577883

ABSTRACT

The cellular prion protein (PrPC) has been associated with diverse biological processes including cell signaling, neurogenesis, and neuroprotection, but its physiological function(s) remain ambiguous. Here we determine the role of PrPC in adult neurogenesis using the olfactory system model in transgenic mice. Olfactory sensory neurons (OSNs) within the olfactory sensory epithelium (OSE) undergo neurogenesis, integration, and turnover even into adulthood. The neurogenic processes of proliferation, differentiation/maturation, and axon targeting were evaluated in wild type, PrP-overexpressing, and PrP-null transgenic mice. Our results indicate that PrPC plays a role in maintaining mature OSNs within the epithelium: overexpression of PrPC resulted in greater survival of mitotically active cells within the OSE, whereas absence of prion protein resulted in fewer cells being maintained over time. These results are supported by both quantitative PCR analysis of gene expression and protein analysis characteristic of OSN differentiation. Finally, evaluation of axon migration determined that OSN axon targeting in the olfactory bulb is PrPC dose-dependent. Together, these findings provide new mechanistic insight into the neuroprotective role for PrPC in adult OSE neurogenesis, whereby more mature neurons are stably maintained in animals expressing PrPC.


Subject(s)
Axons/physiology , Neurogenesis/genetics , Olfactory Receptor Neurons/metabolism , PrPC Proteins/genetics , Animals , Axons/metabolism , Blotting, Western , Cell Differentiation/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Female , Male , Mice , Mice, Transgenic , Neurogenesis/physiology , Olfactory Receptor Neurons/physiology , PrPC Proteins/metabolism , Real-Time Polymerase Chain Reaction
20.
EFSA J ; 16(1): e05132, 2018 Jan.
Article in English | MEDLINE | ID: mdl-32625679

ABSTRACT

The European Commission asked EFSA for a scientific opinion on chronic wasting disease in two parts. Part one, on surveillance, animal health risk-based measures and public health risks, was published in January 2017. This opinion (part two) addresses the remaining Terms of Reference, namely, 'are the conclusions and recommendations in the EFSA opinion of June 2004 on diagnostic methods for chronic wasting disease still valid? If not, an update should be provided', and 'update the conclusions of the 2010 EFSA opinion on the results of the European Union survey on chronic wasting disease in cervids, as regards its occurrence in the cervid population in the European Union'. Data on the performance of authorised rapid tests in North America are not comprehensive, and are more limited than those available for the tests approved for statutory transmissible spongiform encephalopathies surveillance applications in cattle and sheep. There are no data directly comparing available rapid test performances in cervids. The experience in Norway shows that the Bio-Rad TeSeE™ SAP test, immunohistochemistry and western blotting have detected reindeer, moose and red deer cases. It was shown that testing both brainstem and lymphoid tissue from each animal increases the surveillance sensitivity. Shortcomings in the previous EU survey limited the reliability of inferences that could be made about the potential disease occurrence in Europe. Subsequently, testing activity in Europe was low, until the detection of the disease in Norway, triggering substantial testing efforts in that country. Available data neither support nor refute the conclusion that chronic wasting disease does not occur widely in the EU and do not preclude the possibility that the disease was present in Europe before the survey was conducted. It appears plausible that chronic wasting disease could have become established in Norway more than a decade ago.

SELECTION OF CITATIONS
SEARCH DETAIL
...