Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 12(3): e0173859, 2017.
Article in English | MEDLINE | ID: mdl-28329020

ABSTRACT

Although sponges are important components of benthic ecosystems of the Caribbean Sea, their diversity remained poorly investigated in the Lesser Antilles. By organizing a training course in Martinique, we wanted both to promote taxonomy and to provide a first inventory of the sponge diversity on this island. The course was like a naturalist expedition, with a field laboratory and a classroom nearby. Early-career scientists and environmental managers were trained in sponge taxonomy. We gathered unpublished data and conducted an inventory at 13 coastal sites. We explored only shallow water habitats (0-30 m), such as mangroves, reefs or rocky bottoms and underwater caves. According to this study, the sponge fauna of Martinique is currently represented by a minimum of 191 species, 134 of which we could assign species names. One third of the remaining non-identified sponge species we consider to be new to science. Martinique appears very remarkable because of its littoral marine fauna harboring sponge aggregations with high biomass and species diversity dominating over coral species. In mangroves, sponges cover about 10% of the surface of subtidal roots. Several submarine caves are true reservoirs of hidden and insufficiently described sponge diversity. Thanks to this new collaborative effort, the Eastern Caribbean has gained a significant increase of knowledge, with sponge diversity of this area potentially representing 40% of the total in the Caribbean Sea. We thus demonstrated the importance of developing exploratory and educational research in areas historically devoid of biodiversity inventories and systematics studies. Finally, we believe in the necessity to consider not only the number of species but their distribution in space to evaluate their putative contribution to ecosystem services and our willingness to preserve them.


Subject(s)
Porifera/classification , Animals , Biodiversity , Classification , Ecology/education , Ecosystem , Martinique , Porifera/anatomy & histology , Zoology/education
2.
Biodivers Data J ; (4): e10732, 2016.
Article in English | MEDLINE | ID: mdl-28174506

ABSTRACT

BACKGROUND: Correctly identifying organisms is key to most biological research, and is especially critical in areas of biodiversity and conservation. Yet it remains one of the greatest challenges when studying all but the few well-established model systems. The challenge is in part due to the fact that most species have yet to be described, vanishing taxonomic expertise and the relative inaccessibility of taxonomic information. Furthermore, identification keys and other taxonomic resources are based on complex, taxon-specific vocabularies used to describe important morphological characters. Using these resources is made difficult by the fact that taxonomic documentation of the world's biodiversity is an international endeavour, and keys and field guides are not always available in the practitioner's native language. NEW INFORMATION: To address this challenge, we have developed a publicly available on-line illustrated multilingual glossary and translation tool for technical taxonomic terms using the Symbiota Software Project biodiversity platform. Illustrations, photographs and translations have been sourced from the global community of taxonomists working with marine invertebrates and seaweeds. These can be used as single-language illustrated glossaries or to make customized translation tables. The glossary has been launched with terms and illustrations of seaweeds, tunicates, sponges, hydrozoans, sea anemones, and nemerteans, and already includes translations into seven languages for some groups. Additional translations and development of terms for more taxa are underway, but the ultimate utility of this tool depends on active participation of the international taxonomic community.

3.
PeerJ ; 3: e1385, 2015.
Article in English | MEDLINE | ID: mdl-26587347

ABSTRACT

Recent studies have renewed interest in sponge ecology by emphasizing the functional importance of sponges in a broad array of ecosystem services. Many critically important habitats occupied by sponges face chronic stressors that might lead to alterations in their diversity, relatedness, and functional attributes. We addressed whether proximity to human activity might be a significant factor in structuring sponge community composition, as well as potential functional roles, by monitoring sponge diversity and abundance at two structurally similar sites that vary in distance to areas of high coastal development in Bocas Del Toro, Panama. We surveyed sponge communities at each site using belt transects and differences between two sites were compared using the following variables: (1) sponge species richness, Shannon diversity, and inverse Simpson's diversity; (2) phylogenetic diversity; (3) taxonomic and phylogenetic beta diversity; (4) trait diversity and dissimilarity; and (5) phylogenetic and trait patterns in community structure. We observed significantly higher sponge diversity at Punta Caracol, the site most distant from human development (∼5 km). Although phylogenetic diversity was lower at Saigon Bay, the site adjacent to a large village including many houses, businesses, and an airport, the sites did not exhibit significantly different patterns of phylogenetic relatedness in species composition. However, each site had a distinct taxonomic and phylogenetic composition (beta diversity). In addition, the sponge community at Saigon included a higher relative abundance of sponges with high microbial abundance and high chlorophyll a concentration, whereas the community at Punta Caracol had a more even distribution of these traits, yielding a significant difference in functional trait diversity between sites. These results suggest that lower diversity and potentially altered community function might be associated with proximity to human populations. This study highlights the importance of evaluating functional traits and phylogenetic diversity in addition to common diversity metrics when assessing potential environmental impacts on benthic communities.

4.
Zootaxa ; 3956(3): 403-12, 2015 May 11.
Article in English | MEDLINE | ID: mdl-26248926

ABSTRACT

A thin fiber-less sponge from Caribbean reefs (Bocas del Toro, Panama) with close genetic affinities (based on 18S and 28S nuclear ribosomal RNA gene sequences) to large fan-shaped fiber-bearing sponges (Ianthella and Anomoianthella) from the Indo-Pacific Ocean is here presented. We describe its overall external morphology, histological features, and ultrastructure. Its genetic distance from the only previously known fiber-less verongid genus, Hexadella, prompted the need to erect a new genus to classify this species. This novel species constitutes the first record for a member of the family Ianthellidae in the Caribbean. The characterization of the family Ianthellidae (sensu Cook and Bergquist, 2000) is here modified by: i) highlighting the cavernous nature of the choanosome, with many lacunae and channels reported for all genera included in the family; ii) extending the family distribution to the Caribbean; and iii) adding a fourth genus to the group of verongids with eurypylous chambers. The possession of a cellularized cortex (10-300 µm in thickness) is here proposed as a potential synapomorphic character of the Ianthella-Anomoianthella-Vansoestia clade. The main issues regarding the suprageneric classification of verongids are discussed.


Subject(s)
Porifera/classification , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Body Size , DNA, Ribosomal/genetics , Organ Size , Pacific Ocean , Panama , Phylogeny , Porifera/anatomy & histology , Porifera/genetics , Porifera/growth & development
5.
Antonie Van Leeuwenhoek ; 106(5): 993-1009, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25205599

ABSTRACT

The indigenous bacterial communities in sediment microcosms from Dauphin Island (DI), Petit Bois Island (PB) and Perdido Pass (PP) of the coastal Gulf of Mexico were compared following treatment with Macondo oil (MC252) using pyrosequencing and culture-based approaches. After quality-based trimming, 28,991 partial 16S rRNA sequence reads were analyzed by rarefaction, confirming that analyses of bacterial communities were saturated with respect to species diversity. Changes in the relative abundances of Proteobacteria, Bacteroidetes and Firmicutes played an important role in structuring bacterial communities in oil-treated sediments. Proteobacteria were dominant in oil-treated samples, whereas Firmicutes and Bacteroidetes were either the second or the third most abundant taxa. Tenericutes, members of which are known for oil biodegradation, were detected shortly after treatment, and continued to increase in DI and PP sediments. Multivariate statistical analyses (ADONIS) revealed significant dissimilarity of bacterial communities between oil-treated and untreated samples and among locations. In addition, a similarity percentage analysis showed the contribution of each species to the contrast between untreated and oil-treated samples. PCR amplification using DNA from pure cultures of Exiguobacterium,  Pseudoalteromonas,  Halomonas and Dyadobacter, isolated from oil-treated microcosm sediments, produced amplicons similar to polycyclic aromatic hydrocarbon-degrading genes. In the context of the 2010 Macondo blowout, the results from our study demonstrated that the indigenous bacterial communities in coastal Gulf of Mexico sediment microcosms responded to the MC252 oil with altered community structure and species composition. The rapid proliferation of hydrocarbonoclastic bacteria suggests their involvement in the degradation of the spilt oil in the Gulf of Mexico ecosystem.


Subject(s)
Biota/drug effects , Geologic Sediments/microbiology , Biotransformation , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Gulf of Mexico , Metabolic Networks and Pathways/genetics , Metagenomics , Molecular Sequence Data , Oils/metabolism , Phylogeny , Polycyclic Aromatic Hydrocarbons/metabolism , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
6.
Integr Comp Biol ; 53(3): 373-87, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23748742

ABSTRACT

The highly collaborative research sponsored by the NSF-funded Assembling the Porifera Tree of Life (PorToL) project is providing insights into some of the most difficult questions in metazoan systematics. Our understanding of phylogenetic relationships within the phylum Porifera has changed considerably with increased taxon sampling and data from additional molecular markers. PorToL researchers have falsified earlier phylogenetic hypotheses, discovered novel phylogenetic alliances, found phylogenetic homes for enigmatic taxa, and provided a more precise understanding of the evolution of skeletal features, secondary metabolites, body organization, and symbioses. Some of these exciting new discoveries are shared in the papers that form this issue of Integrative and Comparative Biology. Our analyses of over 300 nearly complete 28S ribosomal subunit gene sequences provide specific case studies that illustrate how our dataset confirms new hypotheses of sponge evolution. We recovered monophyletic clades for all 4 classes of sponges, as well as the 4 major clades of Demospongiae (Keratosa, Myxospongiae, Haploscleromorpha, and Heteroscleromorpha), but our phylogeny differs in several aspects from traditional classifications. In most major clades of sponges, families within orders appear to be paraphyletic. Although additional sampling of genes and taxa are needed to establish whether this pattern results from a lack of phylogenetic resolution or from a paraphyletic classification system, many of our results are congruent with those obtained from 18S ribosomal subunit gene sequences and complete mitochondrial genomes. These data provide further support for a revision of the traditional classification of sponges.


Subject(s)
Phylogeny , Porifera/classification , Porifera/genetics , RNA, Ribosomal, 28S/genetics , Animals , Base Sequence , Bayes Theorem , DNA Primers/genetics , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Panama , Sequence Alignment , Sequence Analysis, DNA , Species Specificity , Spectrophotometry, Ultraviolet
7.
Integr Comp Biol ; 53(3): 482-94, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23624868

ABSTRACT

Exploring marine sponges from shallow tropical reefs of the Caribbean and western Central Pacific, as part of large biodiversity (Moorea Biocode Project) and evolutionary (Porifera Tree of Life) research projects, we encountered 13 skeleton-less specimens, initially divided in two morphological groups, which had patterns of coloration and oxidation typical of taxa of the order Verongida (Demospongiae). The first group of samples inhabited open and cryptic habitats of shallow (15-20 m) Caribbean reefs at Bocas del Toro Archipelago, Panama. The second group inhabited schiophilous (e.g., inner coral framework and crevices) habitats on shallow reefs (0.5-20 m deep) in Moorea Island, French Polynesia. We applied an integrative approach by combining analyses of external morphology, histological observations, 18S rDNA, and mtCOI to determine the identity and the relationships of these unknown taxa within the order Verongida. Molecular analyses revealed that none of the species studied belonged to Hexadella (Ianthellidae, Verongida), the only fibreless genus of the Order Verongida currently recognized. The species from the Caribbean locality of Bocas del Toro (Panama) belong to the family Ianthellidae and is closely related to the Pacific genera Ianthella and Anomoianthella, both with well-developed fiber reticulations. We suggest the erection of a new generic denomination to include this novel eurypylous, fibreless ianthellid. The species collected in Moorea were all diplodal verongid taxa, with high affinities to a clade containing Pseudoceratina, Verongula, and Aiolochroia, a Pacific and two Caribbean genera, respectively. These unknown species represented at least three different taxa distinguished by DNA sequence analysis and morphological characteristics. Two new genera and a new species of Pseudoceratina are here proposed to accommodate these novel biological discoveries. The evolutionary and ecological meaning of having or lacking a fiber skeleton within Verongida is challenged under the evidence of the existence of fibreless genera within various verongid clades. Furthermore, the discovery of a fibreless Peudoceratina suggests that the possession of a spongin-chitin fiber reticulation is an "ecological" plastic trait that might be lost under certain conditions, such us growing within another organism's skeletal framework. These results raise new questions about the ecological and evolutionary significance of the development of a fiber skeleton and of sponges' adaptability to various environmental conditions.


Subject(s)
Animal Distribution/physiology , Phylogeny , Porifera/anatomy & histology , Porifera/classification , Porifera/genetics , Animals , Base Sequence , Electron Transport Complex IV/genetics , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Panama , Polynesia , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA , Species Specificity
8.
PLoS One ; 6(11): e26806, 2011.
Article in English | MEDLINE | ID: mdl-22073197

ABSTRACT

BACKGROUND: Marine sponges can associate with abundant and diverse consortia of microbial symbionts. However, associated bacteria remain unexamined for the majority of host sponges and few studies use phylogenetic metrics to quantify symbiont community diversity. DNA fingerprinting techniques, such as terminal restriction fragment length polymorphisms (T-RFLP), might provide rapid profiling of these communities, but have not been explicitly compared to traditional methods. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the bacterial communities associated with the marine sponges Hymeniacidon heliophila and Haliclona tubifera, a sympatric tunicate, Didemnum sp., and ambient seawater from the northern Gulf of Mexico by combining replicated clone libraries with T-RFLP analyses of 16S rRNA gene sequences. Clone libraries revealed that bacterial communities associated with the two sponges exhibited lower species richness and lower species diversity than seawater and tunicate assemblages, with differences in species composition among all four source groups. T-RFLP profiles clustered microbial communities by source; individual T-RFs were matched to the majority (80.6%) of clone library sequences, indicating that T-RFLP analysis can be used to rapidly profile these communities. Phylogenetic metrics of community diversity indicated that the two sponge-associated bacterial communities include dominant and host-specific bacterial lineages that are distinct from bacteria recovered from seawater, tunicates, and unrelated sponge hosts. In addition, a large proportion of the symbionts associated with H. heliophila were shared with distant, conspecific host populations in the southwestern Atlantic (Brazil). CONCLUSIONS/SIGNIFICANCE: The low diversity and species-specific nature of bacterial communities associated with H. heliophila and H. tubifera represent a distinctly different pattern from other, reportedly universal, sponge-associated bacterial communities. Our replicated sampling strategy, which included samples that reflect the ambient environment, allowed us to differentiate resident symbionts from potentially transient or prey bacteria. Pairing replicated clone library construction with rapid community profiling via T-RFLP analyses will greatly facilitate future studies of sponge-microbe symbioses.


Subject(s)
Bacteria/isolation & purification , Porifera/microbiology , Seawater/microbiology , Water Microbiology , Animals , Bacteria/classification , Bacteria/genetics , Phylogeny , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics
9.
PLoS One ; 5(5): e9622, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20502643

ABSTRACT

BACKGROUND: Saba Bank Atoll, Netherlands Antilles, is one of the three largest atolls on Earth and provides habitat for an extensive coral reef community. To improve our knowledge of this vast marine resource, a survey of biodiversity at Saba Bank included a multi-disciplinary team that sampled fishes, mollusks, crustaceans, macroalgae, and sponges. METHODOLOGY/PRINCIPAL FINDINGS: A single member of the dive team conducted surveys of sponge biodiversity during eight dives at six locations, at depths ranging from 15 to 30 m. This preliminary assessment documented the presence of 45 species pooled across multiple locations. Rarefaction analysis estimated that only 48 to 84% of species diversity was sampled by this limited effort, clearly indicating a need for additional surveys. An analysis of historical collections from Saba and Saba Bank revealed an additional 36 species, yielding a total of 81 sponge species recorded from this area. CONCLUSIONS/SIGNIFICANCE: This observed species composition is similar to that found on widespread Caribbean reefs, indicating that the sponge fauna of Saba Bank is broadly representative of the Caribbean as a whole. A robust population of the giant barrel sponge, Xestospongia muta, appeared healthy with none of the signs of disease or bleaching reported from other Caribbean reefs; however, more recent reports of anchor chain damage to these sponges suggests that human activities can have dramatic impacts on these communities. Opportunities to protect this extremely large habitat should be pursued, as Saba Bank may serve as a significant reservoir of sponge species diversity.


Subject(s)
Biodiversity , Porifera/physiology , Animals , Cluster Analysis , Diving , Geography , Humans , Netherlands Antilles , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL