Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
J Biomech ; 167: 112071, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38593721

ABSTRACT

Ligaments and tendons undergo nonuniform deformation during movement. While deformations can be imaged, it remains challenging to use such information to infer regional tissue loading. Shear wave tensiometry is a promising noninvasive technique to gauge axial stress and is premised on a tensioned beam model. However, it is unknown whether tensiometry can predict regional stress in a nonuniformly loaded structure. The objectives of this study were to (1) determine whether regional shear wave speed tracks regional axial stress in nonuniformly loaded fibrous soft tissues, and (2) determine the sensitivity of regional axial stress and shear wave speed to nonuniform load distribution and fiber alignment. We created a representative set of 12,000 dynamic finite element models of a fibrous soft tissue with probabilistic variations in fiber alignment, stiffness, and aspect ratio. In each model, we applied a randomly selected nonuniform load distribution, and then excited a shear wave and tracked its regional propagation. We found that regional shear wave speed was an excellent predictor of the regional axial stress (RMSE = 0.57 MPa) and that the nature of the regional shear wave speed-stress relationship was consistent with a tensioned beam model (R2 = 0.99). Variations in nonuniform load distribution and fiber alignment did not substantially alter the wave speed-stress relationship, particularly at higher loads. Thus, these findings suggests that shear wave tensiometry could provide a quantitative estimate of regional tissue stress in ligaments and tendons.


Subject(s)
Elasticity Imaging Techniques , Tendons , Movement , Ligaments , Stress, Mechanical , Carmustine , Etoposide
2.
Med Sci Sports Exerc ; 56(6): 1077-1084, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38240495

ABSTRACT

PURPOSE: Understanding muscle-tendon forces (e.g., triceps surae and Achilles tendon) during locomotion may aid in the assessment of human performance, injury risk, and rehabilitation progress. Shear wave tensiometry is a noninvasive technique for assessing in vivo tendon forces that has been recently adapted to a wearable technology. However, previous laboratory-based and outdoor tensiometry studies have not evaluated running. This study was undertaken to assess the capacity for shear wave tensiometry to produce valid measures of Achilles tendon loading during running at a range of speeds. METHODS: Participants walked (1.34 m·s -1 ) and ran (2.68, 3.35, and 4.47 m·s -1 ) on an instrumented treadmill while shear wave tensiometers recorded Achilles tendon wave speeds simultaneously with whole-body kinematic and ground reaction force data. A simple isometric task allowed for the participant-specific conversion of Achilles tendon wave speeds to forces. Achilles tendon forces were compared with ankle torque measures obtained independently via inverse dynamics analyses. Differences in Achilles tendon wave speed, Achilles tendon force, and ankle torque across walking and running speeds were analyzed with linear mixed-effects models. RESULTS: Achilles tendon wave speed, Achilles tendon force, and ankle torque exhibited similar temporal patterns across the stance phase of walking and running. Significant monotonic increases in peak Achilles tendon wave speed (56.0-83.8 m·s -1 ), Achilles tendon force (44.0-98.7 N·kg -1 ), and ankle torque (1.72-3.68 N·m·(kg -1 )) were observed with increasing locomotion speed (1.34-4.47 m·s -1 ). Tensiometry estimates of peak Achilles tendon force during running (8.2-10.1 body weights) were within the range of those estimated previously via indirect methods. CONCLUSIONS: These results set the stage for using tensiometry to evaluate Achilles tendon loading during unobstructed athletic movements, such as running, performed in the field.


Subject(s)
Achilles Tendon , Running , Wearable Electronic Devices , Humans , Achilles Tendon/physiology , Running/physiology , Biomechanical Phenomena , Male , Young Adult , Adult , Female , Torque , Walking/physiology , Muscle, Skeletal/physiology
3.
J Mech Behav Biomed Mater ; 147: 106138, 2023 11.
Article in English | MEDLINE | ID: mdl-37782988

ABSTRACT

Shear wave tensiometry is a noninvasive approach for gauging tendon loads based on shear wave speed. Transient shear waves are induced and tracked via sensors secured to the skin overlying a superficial tendon. Wave speeds measured in vivo via tensiometry modulate with tendon load but are lower than that predicted by a tensioned beam model of an isolated tendon, which may be due to the added inertia of adjacent tissues. The objective of this study was to investigate the effects of adjacent fat tissue on shear wave propagation measurements in axially loaded tendons. We created a layered, dynamic finite element model of an elliptical tendon surrounded by subcutaneous fat. Transient shear waves were generated via an impulsive excitation delivered across the tendon or through the subcutaneous fat. The layered models demonstrated dispersive behavior with phase velocity increasing with frequency. Group shear wave speed could be ascertained via dispersion analysis or time-to-peak measures at sequential spatial locations. Simulated wave speeds in the tendon and adjacent fat were similar and modulated with tendon loading. However, wave speed magnitudes were consistently lower in the layered models than in an isolated tendon. For all models, the wave speed-stress relationship was well described by a tensioned beam model after accounting for the added inertia of the adjacent tissues. These results support the premise that externally excited shear waves are measurable in subcutaneous fat and modulate with axial loading in the underlying tendon. The model suggests that adjacent tissues add inertia to the system, which in turn lowers shear wave speeds. This information must be considered when using tensiometry as a clinical or research tool to infer absolute tendon loading.


Subject(s)
Elasticity Imaging Techniques , Tendons , Weight-Bearing , Adipose Tissue , Carmustine , Etoposide , Elasticity Imaging Techniques/methods
4.
Article in English | MEDLINE | ID: mdl-37663049

ABSTRACT

Wearable sensors offer a unique opportunity to study movement in ecological contexts - that is, outside the laboratory where movement happens in ordinary life. This article discusses the purpose, means, and impact of using wearable sensors to assess movement context, kinematics, and kinetics during locomotion, and how this information can be used to better understand and influence movement. We outline the types of information wearable sensors can gather and highlight recent developments in sensor technology, data analysis, and applications. We close with a vision for important future research and key questions the field will need to address to bring the potential benefits of wearable sensing to fruition.

5.
J Biomech ; 157: 111699, 2023 08.
Article in English | MEDLINE | ID: mdl-37429177

ABSTRACT

Shear wave tensiometry is a noninvasive technique for measuring tendon loading during activity based on the speed of a shear wave traveling along the tendon. Shear wave speed has been shown to modulate with axial stress, but calibration is required to obtain absolute measures of tendon loading. However, the current technique only makes use of wave speed, whereas other characteristics of the wave (e.g., amplitude, frequency content) may also vary with tendon loading. It is possible that these data could be used in addition to wave speed to circumvent the need for calibration. Given the potential complex relationships to tendon loading, and the lack of an analytical model to guide the use of these data, it is sensible to use a machine learning approach. Here, we used an ensemble neural network approach to predict inverse dynamics estimates of Achilles tendon stress from shear wave tensiometry data collected in a prior study. Neural network-predicted stresses were highly correlated with stance phase inverse dynamics estimates for walking (R2 = 0.89 ± 0.06) and running (R2 = 0.87 ± 0.11) data reserved for neural network model testing and not included in model training. Additionally, error between neural network-predicted and inverse dynamics-estimated stress was reasonable (walking: RMSD = 11 ± 2% of peak load; running: 25 ± 14%). Results of this pilot analysis suggest that a machine learning approach could reduce the reliance of shear wave tensiometry on calibration and expand its usability in many settings.


Subject(s)
Achilles Tendon , Running , Biomechanical Phenomena , Walking , Neural Networks, Computer
6.
J Orthop Res ; 41(10): 2315-2321, 2023 10.
Article in English | MEDLINE | ID: mdl-37366039

ABSTRACT

The Achilles tendon consists of three subtendons that transmit force from the triceps surae muscles to the calcaneus. Individual differences have been identified in Achilles subtendon morphology and twist in cadavers, which may have implications for triceps surae mechanics and function. High-field magnetic resonance imaging (MRI) can be used to identify boundaries within multi-bundle tissues, which could then enable studies of subtendon structure-function relationships in humans. The objective of this study was to use high-field MRI (7T) to image and reconstruct Achilles subtendons arising from the triceps surae muscles. We imaged the dominant lower leg of a cohort of healthy human subjects (n = 10) using a tuned musculoskeletal sequence (double echo steady state sequence, 0.4 mm isotropic voxels). We then characterized the cross-sectional area and orientation of each subtendon between the MTJ and calcaneal insertion. Image collection and segmentation was repeated to assess repeatability. Subtendon morphometry varied across subjects, with average subtendon areas of 23.5 ± 8.9 mm2 for the medial gastrocnemius, 25.4 ± 8.9 mm2 for the lateral gastrocnemius, and 13.7 ± 5.9 mm2 for the soleus subtendons. Repeatable subject-specific variations in size and position of each subtendon were identified over two visits, expanding on prior knowledge that high variability exists in Achilles subtendon morphology across subjects.


Subject(s)
Achilles Tendon , Calcaneus , Humans , Achilles Tendon/physiology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Calcaneus/anatomy & histology , Magnetic Resonance Imaging , Leg
7.
Clin Biomech (Bristol, Avon) ; 102: 105871, 2023 02.
Article in English | MEDLINE | ID: mdl-36701840

ABSTRACT

BACKGROUND: Previous study showed the triceps surae exhibits spring-like behavior about the ankle during walking in children with cerebral palsy. Thus, the work generated by the triceps surae is diminished relative to typically developing children. This study investigated whether the quadriceps offset the lack of triceps surae work production in children with cerebral palsy who walk in crouch. METHODS: Seven children with cerebral palsy (8-16 yrs) and 14 typically developing controls (8-17 yrs) walked overground at their preferred speed in a motion analysis laboratory. Shear wave tensiometers were used to track patellar and Achilles tendon loading throughout the gait cycle. Tendon force measures were coupled with muscle-tendon kinematic estimates to characterize the net work generated by the quadriceps and triceps surae about the knee and ankle, respectively. FINDINGS: Children with cerebral palsy generated significantly less triceps surae work when compared to controls (P < 0.001). The reverse was true at the knee. Children with cerebral palsy generated positive net work from the quadriceps about the knee, which exceeded the net quadriceps work generated by controls (P = 0.028). INTERPRETATION: There was a marked difference in functional behavior of the triceps surae and quadriceps in children with cerebral palsy who walk in crouch. In particular, the triceps surae of children with cerebral palsy exhibited spring-like behavior about the ankle while the quadriceps exhibited more motor-like behavior about the knee. This redistribution in work could partly be associated with the elevated energetic cost of walking in children with cerebral palsy and is relevant to consider when planning treatments to correct crouch gait.


Subject(s)
Achilles Tendon , Cerebral Palsy , Humans , Child , Biomechanical Phenomena , Knee Joint , Gait , Quadriceps Muscle , Muscle, Skeletal
8.
Eur Radiol ; 33(1): 720-729, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35760909

ABSTRACT

OBJECTIVES: Ultrasound often corroborates clinical diagnosis of Achilles tendinopathy (AT). Traditional measures assess macromorphological features or use qualitative grading scales, primarily focused within the free tendon. Shear wave imaging can non-invasively quantify tendon elasticity, yet it is unknown if proximal structures are affected by tendon pathology. The purpose of the study was to determine the characteristics of both traditional sonographic measures and regional shear wave speed (SWS) between limbs in patients with AT. METHODS: Twenty patients with chronic AT were recruited. Traditional sonographic measures of tendon structure were measured. Regional SWS was collected in a resting ankle position along the entire length of the tendon bilaterally. SWS measures were extracted and interpolated across evenly distributed points corresponding to the free tendon (FT), soleus aponeurosis (SA), and gastrocnemius aponeurosis (GA). Comparisons were made between limbs in both traditional sonographic measures and regional SWS. RESULTS: Symptomatic tendons were thicker (10.2 (1.9) vs. 6.8 (1.8) mm; p < 0.001) and had more hyperemia (p = 0.001) and hypoechogenicity (p = 0.002) than the contralateral tendon. Regional SWS in the FT was lower in the symptomatic limb compared to the contralateral limb (11.53 [10.99, 12.07] vs. 10.97 [10.43, 11.51]; p = 0.03). No differences between limbs were found for the SA (p = 0.13) or GA (p = 0.99). CONCLUSIONS: Lower SWS was only observed in the FT in AT patients, indicating that alterations in tendon elasticity associated with AT were localized to the FT and did not involve the proximal passive tendon structures. KEY POINTS: • Baseline characteristics of a pilot sample of 20 subjects suffering from chronic Achilles tendinopathy showed differences in conventional sonographic measures of tendon thickness, qualitatively assessed hypoechogenicity, hyperemia, and quantitative measures of shear wave speed. • Regional shear wave speeds were lower in the free tendon but not in the proximal regions of the soleus or gastrocnemius aponeuroses in Achilles tendinopathy patients. • Using shear wave imaging to estimate tendon stiffness may prove beneficial for clinical validation studies to address important topics such as return to activity and the effectiveness of rehabilitation protocols.


Subject(s)
Achilles Tendon , Elasticity Imaging Techniques , Hyperemia , Tendinopathy , Humans , Achilles Tendon/diagnostic imaging , Elasticity Imaging Techniques/methods , Tendinopathy/diagnostic imaging , Elasticity , Ultrasonography/methods
9.
J Orthop Res ; 41(3): 524-533, 2023 03.
Article in English | MEDLINE | ID: mdl-35716160

ABSTRACT

Surgeons routinely perform incremental releases on overly tight ligaments during total knee arthroplasty (TKA) to reduce ligament tension and achieve their desired implant alignment. However, current methods to assess whether the surgeon achieved their desired reduction in the tension of a released ligament are subjective and/or do not provide a quantitative metric of tension in an individual ligament. Accordingly, the purpose of this study was to determine whether shear wave tensiometry, a novel method to assess tension in individual ligaments based on the speed of shear wave propagation, can detect changes in ligament tension following incremental releases. In seven medial and eight lateral collateral porcine ligaments (MCL and LCL, respectively), we measured shear wave speeds and ligament tensions before and after incremental releases consisting of punctures with an 18-gauge needle. We found that shear wave speed squared decreased linearly with decreasing tension in both the MCL (average coefficient of determination (R2 avg ) = 0.76) and LCL (R2 avg = 0.94). We determined that errors in predicting tension following incremental releases were 26.2 and 14.2 N in the MCL and LCL, respectively, using ligament-specific calibrations. These results suggest shear wave tensiometry is a promising method to objectively measure the tension reduction in released structures. Clinical Significance: Direct, objective measurements of the tension changes in individual ligaments following release could enhance surgical precision during soft tissue balancing in total knee arthroplasty. Thus, shear wave tensiometry could help surgeons reduce the risk of poor outcomes associated with overly tight ligaments, including residual knee pain and stiffness.


Subject(s)
Arthroplasty, Replacement, Knee , Collateral Ligaments , Knee Prosthesis , Humans , Animals , Swine , Knee Joint/surgery , Arthroplasty, Replacement, Knee/methods , Knee/surgery , Range of Motion, Articular , Biomechanical Phenomena
10.
Micromachines (Basel) ; 15(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38258151

ABSTRACT

Shear wave tensiometry is a noninvasive method for directly measuring wave speed as a proxy for force in tendons during dynamic activities. Traditionally, tensiometry has used broadband excitation pulses and measured the wave travel time between two sensors. In this work, we demonstrate a new method for tracking phase velocity using shaped excitations and measurements from a single sensor. We observed modulation of phase velocity in the Achilles tendon that was generally consistent with wave speed measures obtained via broadband excitation. We also noted a frequency dependence of phase velocity, which is expected for dispersive soft tissues. The implementation of this method could enhance the use of noninvasive wave speed measures to characterize tendon forces. Further, the approach allows for the design of smaller shear wave tensiometers usable for a broader range of tendons and applications.

11.
Sci Robot ; 7(71): eabq1514, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36260697

ABSTRACT

Exosuits have the potential to assist locomotion in both healthy and pathological populations, but the effect of exosuit assistance on the underlying muscle-tendon tissue loading is not yet understood. In this study, we used shear wave tensiometers to characterize the modulation of Achilles tendon force with load carriage and exosuit assistance at the ankle. When walking (1.25 m/s) unassisted on a treadmill with load carriage weights of 15 and 30% of body weight, peak Achilles tendon force increased by 11 and 23%, respectively. Ankle exosuit assistance significantly reduced peak Achilles tendon force relative to unassisted, although the magnitude of change was variable across participants. Peak Achilles tendon force was significantly correlated with peak ankle torque for unassisted walking across load carriage conditions. However, when ankle plantarflexor assistance was applied, the relationship between peak tendon force and peak biological ankle torque was no longer significant. An outdoor pilot study was conducted in which a wearable shear wave tensiometer was used to measure Achilles tendon wave speed and compare across an array of assistance loading profiles. Reductions in tendon loading varied depending on the profile, highlighting the importance of in vivo measurements of muscle and tendon forces when studying and optimizing exoskeletons and exosuits.


Subject(s)
Achilles Tendon , Humans , Achilles Tendon/physiology , Biomechanical Phenomena , Pilot Projects , Walking/physiology , Ankle Joint/physiology
12.
Sensors (Basel) ; 22(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35336454

ABSTRACT

Shear wave tensiometry is a noninvasive approach for assessing in vivo tendon forces based on the speed of a propagating shear wave. Wave speed is measured by impulsively exciting a shear wave in a tendon and then assessing the wave travel time between skin-mounted accelerometers. Signal distortion with wave travel can cause errors in the estimated wave travel time. In this study, we investigated the use of a Kalman filter to fuse spatial and temporal accelerometer measurements of wave propagation. Spatial measurements consist of estimated wave travel times between accelerometers. Temporal measurements are the change in wave arrival at a fixed accelerometer between successive impulsive taps. The Kalman filter substantially improved the accuracy of estimated wave speeds when applied to simulated tensiometer data. The variability of estimated wave speed was reduced by ~55% in the presence of random sensor noise. It was found that increasing the number of accelerometers from two to three further reduced wave speed errors by 45%. The use of redundant accelerometers (>2) also improved the robustness of wave speed measures in the presence of uncertainty in accelerometer location. We conclude that the use of a Kalman filter and redundant accelerometers can enhance the fidelity of using shear wave tensiometers to track tendon wave speed and loading during movement.


Subject(s)
Movement , Tendons , Accelerometry , Phantoms, Imaging , Skin
13.
Neurorehabil Neural Repair ; 36(4-5): 317-327, 2022 04.
Article in English | MEDLINE | ID: mdl-35321610

ABSTRACT

BACKGROUND: Synergy analysis provides a means of quantifying the complexity of neuromuscular control during gait. Prior studies have shown evidence of reduced neuromuscular complexity during gait in individuals with neurological disorders associated with stroke, cerebral palsy, and Parkinson's disease. OBJECTIVE: The purpose of this study was to investigate neuromuscular complexity during gait in individuals who experienced a prior traumatic brain injury (TBI) that resulted in chronic balance deficits. METHODS: We measured and analyzed lower extremity electromyographic data during treadmill and overground walking for 44 individuals with residual balance deficits from a mild-to-moderate TBI at least 1 year prior. We also tested 20 unimpaired controls as a comparison. Muscle synergies were calculated for each limb using non-negative matrix factorization of the activation patterns for 6 leg muscles. We quantified neuromuscular complexity using Walk-DMC, a normalized metric of the total variance accounted for by a single synergy, in which a Walk-DMC score of 100 represents normal variance accounted for. We compared group average synergy structures and inter-limb similarity using cosine similarity. We also quantified each individual's gait and balance using the Sensory Organization Test, the Dynamic Gait Index, and the Six-Minute Walk Test. RESULTS: Neuromuscular complexity was diminished for individuals with a prior TBI. Walk-DMC averaged 92.8 ± 12.3 for the TBI group during overground walking, which was significantly less than seen in controls (100.0 ± 10.0). Individuals with a prior TBI exhibited 13% slower overground walking speeds than controls and reduced performance on the Dynamic Gait Index (18.5 ± 4.7 out of 24). However, Walk-DMC measures were insufficient to stratify variations in assessments of gait and balance performance. Group average synergy structures were similar between groups, although there were considerable between-group differences in the inter-limb similarity of the synergy activation vectors. CONCLUSIONS: Individuals with gait and balance deficits due to a prior TBI exhibit evidence of decreased neuromuscular complexity during gait. Our results suggest that individuals with TBI exhibit similar muscle synergy weightings as controls, but altered control of the temporal activation of these muscle weightings.


Subject(s)
Brain Injuries, Traumatic , Gait Disorders, Neurologic , Brain Injuries, Traumatic/complications , Electromyography/methods , Gait/physiology , Gait Disorders, Neurologic/etiology , Humans , Muscle, Skeletal/physiology , Walking/physiology
14.
J Orthop Res ; 40(12): 2763-2770, 2022 12.
Article in English | MEDLINE | ID: mdl-35212418

ABSTRACT

The purpose of this study was to quantitatively assess Achilles tendon mechanical behavior during gait in children with cerebral palsy (CP). We used a newly designed noninvasive sensor to measure Achilles tendon force in 11 children with CP (4F, 8-16 years old) and 15 typically developing children (controls) (9F, 8-17 years old) during overground walking. Mechanical work loop plots (force-displacement plots) were generated by combining muscle-tendon kinetics, kinematics, and EMG activity to evaluate the Achilles tendon work generated about the ankle. Work loop patterns in children with CP were substantially different than those seen in controls. Notably, children with CP showed significantly diminished work production at their preferred speed compared to controls at their preferred speed and slower speeds. Despite testing a heterogeneous population of children with CP, we observed a homogenous spring-like muscle-tendon behavior in these participants. This is in contrast with control participants who used their plantar flexors like a motor during gait. Statement of Clinical Significance: These data demonstrate the potential for using skin-mounted sensors to objectively evaluate muscle contributions to work production in pathological gait.


Subject(s)
Achilles Tendon , Cerebral Palsy , Child , Humans , Adolescent , Cerebral Palsy/complications , Ultrasonography , Gait/physiology , Muscle, Skeletal/physiology , Achilles Tendon/physiology , Biomechanical Phenomena
15.
Sensors (Basel) ; 22(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35214491

ABSTRACT

Muscle-tendon power output is commonly assessed in the laboratory through the work loop, a paired analysis of muscle force and length during a cyclic task. Work-loop analysis of muscle-tendon function in out-of-lab conditions has been elusive due to methodological limitations. In this work, we combined kinetic and kinematic measures from shear wave tensiometry and inertial measurement units, respectively, to establish a wearable system for estimating work and power output from the soleus and gastrocnemius muscles during outdoor locomotion. Across 11 healthy young adults, we amassed 4777 strides of walking on slopes from -10° to +10°. Results showed that soleus work scales with incline, while gastrocnemius work is relatively insensitive to incline. These findings agree with previous results from laboratory-based studies while expanding technological capabilities by enabling wearable analysis of muscle-tendon kinetics. Applying this system in additional settings and activities could improve biomechanical knowledge and evaluation of protocols in scenarios such as rehabilitation, device design, athletics, and military training.


Subject(s)
Achilles Tendon , Wearable Electronic Devices , Achilles Tendon/physiology , Biomechanical Phenomena/physiology , Humans , Kinetics , Locomotion/physiology , Muscle, Skeletal/physiology , Young Adult
16.
J Appl Biomech ; 38(1): 58-66, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35045394

ABSTRACT

Trochlear groove geometry and the location of the tibial tubercle, where the patellar tendon inserts, have both been associated with patellofemoral instability and can be modified surgically. Although their effects on patellofemoral biomechanics have been investigated individually, the interaction between the two is unclear. The authors' aim was to use statistical shape modeling and musculoskeletal simulation to examine the effect of patellofemoral geometry on the relationship between tibial tubercle location and patellofemoral function. A statistical shape model was used to generate new knee geometries with trochlear grooves ranging from shallow to deep. A Monte Carlo approach was used to create 750 knee models by randomly selecting a geometry and randomly translating the tibial tubercle medially/laterally and anteriorly. Each knee model was incorporated into a musculoskeletal model, and an overground walking trial was simulated. Knees with shallow trochlear geometry were more sensitive to tubercle medialization with greater changes in lateral patella position (-3.0 mm/cm medialization shallow vs -0.6 mm/cm deep) and cartilage contact pressure (-0.51 MPa/cm medialization shallow vs 0.04 MPa/cm deep). However, knees with deep trochlear geometry experienced greater increases in medial cartilage contact pressure with medialization. This modeling framework has the potential to aid in surgical decision making.


Subject(s)
Joint Instability , Patellofemoral Joint , Biomechanical Phenomena , Humans , Knee Joint , Patella , Patellofemoral Joint/surgery , Tibia/surgery
17.
J Mech Behav Biomed Mater ; 125: 104964, 2022 01.
Article in English | MEDLINE | ID: mdl-34800889

ABSTRACT

The use of shear wave propagation to noninvasively measure material properties and loading in tendons and ligaments is a growing area of interest in biomechanics. Prior models and experiments suggest that shear wave speed primarily depends on the apparent shear modulus (i.e., shear modulus accounting for contributions from all constituents) at low loads, and then increases with axial stress when axially loaded. However, differences in the magnitudes of shear wave speeds between ligaments and tendons, which have different substructures, suggest that the tissue's composition and fiber alignment may also affect shear wave propagation. Accordingly, the objectives of this study were to (1) characterize changes in the apparent shear modulus induced by variations in constitutive properties and fiber alignment, and (2) determine the sensitivity of the shear wave speed-stress relationship to variations in constitutive properties and fiber alignment. To enable systematic variations of both constitutive properties and fiber alignment, we developed a finite element model that represented an isotropic ground matrix with an embedded fiber distribution. Using this model, we performed dynamic simulations of shear wave propagation at axial strains from 0% to 10%. We characterized the shear wave speed-stress relationship using a simple linear regression between shear wave speed squared and axial stress, which is based on an analytical relationship derived from a tensioned beam model. We found that predicted shear wave speeds were both in-range with shear wave speeds in previous in vivo and ex vivo studies, and strongly correlated with the axial stress (R2 = 0.99). The slope of the squared shear wave speed-axial stress relationship was highly sensitive to changes in tissue density. Both the intercept of this relationship and the apparent shear modulus were sensitive to both the shear modulus of the ground matrix and the stiffness of the fibers' toe-region when the fibers were less well-aligned to the loading direction. We also determined that the tensioned beam model overpredicted the axial tissue stress with increasing load when the model had less well-aligned fibers. This indicates that the shear wave speed increases likely in response to a load-dependent increase in the apparent shear modulus. Our findings suggest that researchers may need to consider both the material and structural properties (i.e., fiber alignment) of tendon and ligament when measuring shear wave speeds in pathological tissues or tissues with less well-aligned fibers.


Subject(s)
Stress, Mechanical , Biomechanical Phenomena , Biophysics
18.
J R Soc Interface ; 18(181): 20210326, 2021 08.
Article in English | MEDLINE | ID: mdl-34404228

ABSTRACT

The patellofemoral joint plays a crucial mechanical role during walking and running. It increases the knee extensor mechanism's moment arm and reduces the knee extension muscle forces required to generate the extension moment that supports body weight, prevents knee buckling and propels the centre of mass. However, the mechanical implications of moment arm variation caused by patellofemoral and tibiofemoral motion remain unclear. We used a data-driven musculoskeletal model with a 12-degree-of-freedom knee to simulate the knee extension moment arm during walking and running. Using a geometric method to calculate the moment arm, we found smaller moment arms during running than during walking in the swing phase. Overall, knee flexion causes differences between running and walking moment arms as increased flexion causes a posterior shift in the tibiofemoral rotation axis and patella articulation with the distal femur. Moment arms were also affected by knee motion direction and best predicted by separating by direction instead of across the entire gait cycle. Furthermore, we found high inter-subject variation in the moment arm that was largely explained by out-of-plane motion. Our results are consistent with the concept that shorter moment arms increase the effective mechanical advantage of the knee and may contribute to increased running velocity.


Subject(s)
Running , Walking , Arm , Biomechanical Phenomena , Gait , Knee Joint
19.
Gait Posture ; 88: 185-191, 2021 07.
Article in English | MEDLINE | ID: mdl-34098404

ABSTRACT

BACKGROUND: Motion analysis is commonly used to evaluate joint kinetics in children with cerebral palsy who exhibit gait disorders. However, one cannot readily infer muscle-tendon forces from joint kinetics. This study investigates the use of shear wave tensiometry to characterize Achilles and patellar tendon forces during gait. RESEARCH QUESTION: How do Achilles and patellar tendon wave speed and loading modulate with walking speed in typically developing children? METHODS: Twelve typically developing children (9-16 years old) walked on an instrumented treadmill with shear wave tensiometers over their Achilles (n = 11) and patellar (n = 9) tendons. Wave speeds were recorded at five leg length-normalized walking speeds (very slow to very fast). Achilles and patellar tendon moment arms were measured with synchronized ultrasound and motion capture. The tendon wave speed-load relationship was calibrated at the typical walking speed and used to estimate tendon loading at other walking speeds. RESULTS: Characteristic Achilles and patellar tendon wave speed trajectories exhibited two peaks over a gait cycle. Peak Achilles tendon force closely aligned with peak ankle plantarflexor moment during pushoff, though force exhibited less modulation with walking speed. A second peak in late swing Achilles loading, which was not evident from the ankle moment, increased significantly with walking speed (p < 0.001). The two peaks in patellar tendon loading occurred at 12 ± 1% and 68 ± 6% of the gait cycle, matching the timing of peak knee extension moment in early stance and early swing. Both patellar tendon load peaks increased significantly with walking speed (p < 0.05). SIGNIFICANCE: This is the first study to use shear wave tensiometry to characterize Achilles and patellar tendon loading during gait in children. These data could serve as a normative comparison when using tensiometry to identify abnormal tendon loading patterns in individuals who exhibit equinus and/or crouch gait.


Subject(s)
Achilles Tendon , Patellar Ligament , Tendinopathy , Adolescent , Biomechanical Phenomena , Child , Gait , Humans , Walking
20.
J Biomech Eng ; 143(8)2021 08 01.
Article in English | MEDLINE | ID: mdl-34008841

ABSTRACT

The relationship between three-dimensional shape and patellofemoral mechanics is complicated. The Wiberg patella classification is a method of distinguishing shape differences in the axial plane of the patella that can be used to connect shape differences to observed mechanics. This study uses the Wiberg patella classification to differentiate variance in a statistical shape model describing changes in patella morphology and height. We investigate how patella morphology influences force distribution within the patellofemoral joint. The Wiberg type I patella has a more symmetrical medial and lateral facet while the type III patella has a larger lateral facet compared to medial. The second principal component of the statistical shape model described shape variation that qualitatively resembled the different Wiberg patellas. We generated patellofemoral morphologies from the statistical shape model and integrated them into a musculoskeletal model with a twelve degrees-of-freedom knee. We simulated an overground walking trial with these morphologies and recorded patellofemoral mechanics and ligament forces. An increase in patellar ligament force corresponded with an increase in patella height. Wiberg type III patellas had a sharper patella apex which related to lower ratios of quadriceps tendon forces to patellar ligament forces. The change in pivot point of the patella affects the ratio of forces as well as the patellofemoral reaction force. This study provides a better understanding of how patella morphology affects fundamental patella mechanics which may help identify at-risk populations for pathology development.


Subject(s)
Patellar Ligament
SELECTION OF CITATIONS
SEARCH DETAIL
...