Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
ACS Chem Biol ; 19(4): 938-952, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38565185

ABSTRACT

Phenotypic assays have become an established approach to drug discovery. Greater disease relevance is often achieved through cellular models with increased complexity and more detailed readouts, such as gene expression or advanced imaging. However, the intricate nature and cost of these assays impose limitations on their screening capacity, often restricting screens to well-characterized small compound sets such as chemogenomics libraries. Here, we outline a cheminformatics approach to identify a small set of compounds with likely novel mechanisms of action (MoAs), expanding the MoA search space for throughput limited phenotypic assays. Our approach is based on mining existing large-scale, phenotypic high-throughput screening (HTS) data. It enables the identification of chemotypes that exhibit selectivity across multiple cell-based assays, which are characterized by persistent and broad structure activity relationships (SAR). We validate the effectiveness of our approach in broad cellular profiling assays (Cell Painting, DRUG-seq, and Promotor Signature Profiling) and chemical proteomics experiments. These experiments revealed that the compounds behave similarly to known chemogenetic libraries, but with a notable bias toward novel protein targets. To foster collaboration and advance research in this area, we have curated a public set of such compounds based on the PubChem BioAssay dataset and made it available for use by the scientific community.


Subject(s)
Drug Discovery , High-Throughput Screening Assays , Small Molecule Libraries , Drug Discovery/methods , High-Throughput Screening Assays/methods , Cheminformatics/methods , Small Molecule Libraries/chemistry , Structure-Activity Relationship
2.
Nat Commun ; 15(1): 275, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177131

ABSTRACT

Targeted protein degradation (TPD) mediates protein level through small molecule induced redirection of E3 ligases to ubiquitinate neo-substrates and mark them for proteasomal degradation. TPD has recently emerged as a key modality in drug discovery. So far only a few ligases have been utilized for TPD. Interestingly, the workhorse ligase CRBN has been observed to be downregulated in settings of resistance to immunomodulatory inhibitory drugs (IMiDs). Here we show that the essential E3 ligase receptor DCAF1 can be harnessed for TPD utilizing a selective, non-covalent DCAF1 binder. We confirm that this binder can be functionalized into an efficient DCAF1-BRD9 PROTAC. Chemical and genetic rescue experiments validate specific degradation via the CRL4DCAF1 E3 ligase. Additionally, a dasatinib-based DCAF1 PROTAC successfully degrades cytosolic and membrane-bound tyrosine kinases. A potent and selective DCAF1-BTK-PROTAC (DBt-10) degrades BTK in cells with acquired resistance to CRBN-BTK-PROTACs while the DCAF1-BRD9 PROTAC (DBr-1) provides an alternative strategy to tackle intrinsic resistance to VHL-degrader, highlighting DCAF1-PROTACS as a promising strategy to overcome ligase mediated resistance in clinical settings.


Subject(s)
Carrier Proteins , Proteolysis Targeting Chimera , Ubiquitin-Protein Ligases , Carrier Proteins/metabolism , Proteolysis , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
3.
Cell Death Dis ; 13(1): 45, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013112

ABSTRACT

PHY34 is a synthetic small molecule, inspired by a compound naturally occurring in tropical plants of the Phyllanthus genus. PHY34 was developed to have potent in vitro and in vivo anticancer activity against high grade serous ovarian cancer (HGSOC) cells. Mechanistically, PHY34 induced apoptosis in ovarian cancer cells by late-stage autophagy inhibition. Furthermore, PHY34 significantly reduced tumor burden in a xenograft model of ovarian cancer. In order to identify its molecular target/s, we undertook an unbiased approach utilizing mass spectrometry-based chemoproteomics. Protein targets from the nucleocytoplasmic transport pathway were identified from the pulldown assay with the cellular apoptosis susceptibility (CAS) protein, also known as CSE1L, representing a likely candidate protein. A tumor microarray confirmed data from mRNA expression data in public databases that CAS expression was elevated in HGSOC and correlated with worse clinical outcomes. Overexpression of CAS reduced PHY34 induced apoptosis in ovarian cancer cells based on PARP cleavage and Annexin V staining. Compounds with a diphyllin structure similar to PHY34 have been shown to inhibit the ATP6V0A2 subunit of V(vacuolar)-ATPase. Therefore, ATP6V0A2 wild-type and ATP6V0A2 V823 mutant cell lines were tested with PHY34, and it was able to induce cell death in the wild-type at 246 pM while the mutant cells were resistant up to 55.46 nM. Overall, our data demonstrate that PHY34 is a promising small molecule for cancer therapy that targets the ATP6V0A2 subunit to induce autophagy inhibition while interacting with CAS and altering nuclear localization of proteins.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Cell Nucleus/metabolism , Cellular Apoptosis Susceptibility Protein/metabolism , Cystadenocarcinoma, Serous/metabolism , Ovarian Neoplasms/metabolism , Proton-Translocating ATPases/antagonists & inhibitors , Active Transport, Cell Nucleus/drug effects , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cellular Apoptosis Susceptibility Protein/genetics , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/pathology , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Phyllanthus/chemistry , Prognosis
4.
ACS Chem Biol ; 16(11): 2185-2192, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34515462

ABSTRACT

Bromodomain-containing proteins frequently reside in multisubunit chromatin complexes with tissue or cell state-specific compositions. Recent studies have revealed tumor-specific dependencies on the BAF complex bromodomain subunit BRD9 that are a result of recurrent mutations afflicting the structure and composition of associated complex members. To enable the study of ligand engaged complex assemblies, we established a chemoproteomics approach using a functionalized derivative of the BRD9 ligand BI-9564 as an affinity matrix. Unexpectedly, in addition to known interactions with BRD9 and associated BAF complex proteins, we identify a previously unreported interaction with members of the NuA4 complex through the bromodomain-containing subunit BRD8. We apply this finding, alongside a homology-model-guided design, to develop chemical biology approaches for the study of BRD8 inhibition and to arrive at first-in-class selective and cellularly active probes for BRD8. These tools will empower further pharmacological studies of BRD9 and BRD8 within respective BAF and NuA4 complexes.


Subject(s)
Benzylamines/pharmacology , Naphthyridines/pharmacology , Proteomics/methods , Transcription Factors/metabolism , Cell Line, Tumor , Cell Lineage , DNA Repair , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/physiology , Humans , Ligands , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Protein Subunits , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcriptome
5.
Nat Chem Biol ; 17(3): 280-290, 2021 03.
Article in English | MEDLINE | ID: mdl-33462494

ABSTRACT

Although most acute skin wounds heal rapidly, non-healing skin ulcers represent an increasing and substantial unmet medical need that urgently requires effective therapeutics. Keratinocytes resurface wounds to re-establish the epidermal barrier by transitioning to an activated, migratory state, but this ability is lost in dysfunctional chronic wounds. Small-molecule regulators of keratinocyte plasticity with the potential to reverse keratinocyte malfunction in situ could offer a novel therapeutic approach in skin wound healing. Utilizing high-throughput phenotypic screening of primary keratinocytes, we identify such small molecules, including bromodomain and extra-terminal domain (BET) protein family inhibitors (BETi). BETi induce a sustained activated, migratory state in keratinocytes in vitro, increase activation markers in human epidermis ex vivo and enhance skin wound healing in vivo. Our findings suggest potential clinical utility of BETi in promoting keratinocyte re-epithelialization of skin wounds. Importantly, this novel property of BETi is exclusively observed after transient low-dose exposure, revealing new potential for this compound class.


Subject(s)
Cell Cycle Proteins/genetics , Epidermis/drug effects , Re-Epithelialization/drug effects , Skin Ulcer/drug therapy , Small Molecule Libraries/pharmacology , Transcription Factors/genetics , Wounds, Nonpenetrating/drug therapy , Animals , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Disease Models, Animal , Epidermis/metabolism , Epidermis/pathology , Fluorescence Resonance Energy Transfer , Gene Expression Regulation , High-Throughput Screening Assays , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/pathology , Male , Mice , Mice, Inbred C57BL , Primary Cell Culture , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Precursors/antagonists & inhibitors , Protein Precursors/genetics , Protein Precursors/metabolism , Re-Epithelialization/genetics , Skin Ulcer/genetics , Skin Ulcer/metabolism , Skin Ulcer/pathology , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Transcription, Genetic , Wounds, Nonpenetrating/genetics , Wounds, Nonpenetrating/metabolism , Wounds, Nonpenetrating/pathology
7.
Nat Chem Biol ; 16(1): 50-59, 2020 01.
Article in English | MEDLINE | ID: mdl-31819276

ABSTRACT

The post-genomic era has seen many advances in our understanding of cancer pathways, yet resistance and tumor heterogeneity necessitate multiple approaches to target even monogenic tumors. Here, we combine phenotypic screening with chemical genetics to identify pre-messenger RNA endonuclease cleavage and polyadenylation specificity factor 3 (CPSF3) as the target of JTE-607, a small molecule with previously unknown target. We show that CPSF3 represents a synthetic lethal node in a subset of acute myeloid leukemia (AML) and Ewing's sarcoma cancer cell lines. Inhibition of CPSF3 by JTE-607 alters expression of known downstream effectors in AML and Ewing's sarcoma lines, upregulates apoptosis and causes tumor-selective stasis in mouse xenografts. Mechanistically, it prevents the release of newly synthesized pre-mRNAs, resulting in read-through transcription and the formation of DNA-RNA hybrid R-loop structures. This study implicates pre-mRNA processing, and specifically CPSF3, as a druggable target providing an avenue to therapeutic intervention in cancer.


Subject(s)
Cleavage And Polyadenylation Specificity Factor/metabolism , Leukemia, Myeloid, Acute/metabolism , RNA Precursors/metabolism , Sarcoma, Ewing/metabolism , Animals , Apoptosis/drug effects , Binding Sites , Carboxylic Ester Hydrolases/metabolism , Cell Line, Tumor , Cell Survival , Cleavage And Polyadenylation Specificity Factor/genetics , HEK293 Cells , Humans , Leukemia, Myeloid, Acute/drug therapy , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Phenotype , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Piperazines/pharmacology , Protein Binding , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Sarcoma, Ewing/drug therapy
8.
Gerontol Geriatr Med ; 5: 2333721419855665, 2019.
Article in English | MEDLINE | ID: mdl-31276018

ABSTRACT

Everyday discrimination is a potent source of stress for racial minorities, and is associated with a wide range of negative health outcomes, spanning both mental and physical health. Few studies have examined the relationships linking race and discrimination to mortality in later life. We examined the longitudinal association among race, everyday discrimination, and all-cause mortality in 12,081 respondents participating in the Health and Retirement Study. Cox proportional hazards models showed that everyday discrimination, but not race, was positively associated with mortality; depressive symptoms and lifestyle factors partially accounted for the relationship between everyday discrimination and mortality; and race did not moderate the association between everyday discrimination and mortality. These findings contribute to a growing body of evidence on the role that discrimination plays in shaping the life chances, resources, and health of people, and, in particular, minority members, who are continuously exposed to unfair treatment in their everyday lives.

9.
Nat Chem Biol ; 15(7): 747-755, 2019 07.
Article in English | MEDLINE | ID: mdl-31209351

ABSTRACT

Nimbolide, a terpenoid natural product derived from the Neem tree, impairs cancer pathogenicity; however, the direct targets and mechanisms by which nimbolide exerts its effects are poorly understood. Here, we used activity-based protein profiling (ABPP) chemoproteomic platforms to discover that nimbolide reacts with a novel functional cysteine crucial for substrate recognition in the E3 ubiquitin ligase RNF114. Nimbolide impairs breast cancer cell proliferation in-part by disrupting RNF114-substrate recognition, leading to inhibition of ubiquitination and degradation of tumor suppressors such as p21, resulting in their rapid stabilization. We further demonstrate that nimbolide can be harnessed to recruit RNF114 as an E3 ligase in targeted protein degradation applications and show that synthetically simpler scaffolds are also capable of accessing this unique reactive site. Our study highlights the use of ABPP platforms in uncovering unique druggable modalities accessed by natural products for cancer therapy and targeted protein degradation applications.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Biological Products/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Carrier Proteins/metabolism , Limonins/pharmacology , Proteolysis/drug effects , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Biological Products/chemistry , Biological Products/isolation & purification , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Limonins/chemistry , Limonins/isolation & purification , Ubiquitin-Protein Ligases
10.
ACS Chem Biol ; 14(11): 2430-2440, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31059647

ABSTRACT

Targeted protein degradation has arisen as a powerful strategy for drug discovery allowing the targeting of undruggable proteins for proteasomal degradation. This approach most often employs heterobifunctional degraders consisting of a protein-targeting ligand linked to an E3 ligase recruiter to ubiquitinate and mark proteins of interest for proteasomal degradation. One challenge with this approach, however, is that only a few E3 ligase recruiters currently exist for targeted protein degradation applications, despite the hundreds of known E3 ligases in the human genome. Here, we utilized activity-based protein profiling (ABPP)-based covalent ligand screening approaches to identify cysteine-reactive small-molecules that react with the E3 ubiquitin ligase RNF4 and provide chemical starting points for the design of RNF4-based degraders. The hit covalent ligand from this screen reacted with either of two zinc-coordinating cysteines in the RING domain, C132 and C135, with no effect on RNF4 activity. We further optimized the potency of this hit and incorporated this potential RNF4 recruiter into a bifunctional degrader linked to JQ1, an inhibitor of the BET family of bromodomain proteins. We demonstrate that the resulting compound CCW 28-3 is capable of degrading BRD4 in a proteasome- and RNF4-dependent manner. In this study, we have shown the feasibility of using chemoproteomics-enabled covalent ligand screening platforms to expand the scope of E3 ligase recruiters that can be exploited for targeted protein degradation applications.


Subject(s)
Coordination Complexes/chemistry , Nuclear Proteins/metabolism , Proteolysis/drug effects , Small Molecule Libraries/chemistry , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Cycle Proteins/metabolism , Coordination Complexes/metabolism , Cysteine/chemistry , Humans , Ligands , Molecular Docking Simulation , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Domains , Small Molecule Libraries/metabolism , Structure-Activity Relationship , Ubiquitination , Zinc/chemistry
11.
Nat Chem Biol ; 15(2): 179-188, 2019 02.
Article in English | MEDLINE | ID: mdl-30643281

ABSTRACT

The identification of activating mutations in NOTCH1 in 50% of T cell acute lymphoblastic leukemia has generated interest in elucidating how these mutations contribute to oncogenic transformation and in targeting the pathway. A phenotypic screen identified compounds that interfere with trafficking of Notch and induce apoptosis via an endoplasmic reticulum (ER) stress mechanism. Target identification approaches revealed a role for SLC39A7 (ZIP7), a zinc transport family member, in governing Notch trafficking and signaling. Generation and sequencing of a compound-resistant cell line identified a V430E mutation in ZIP7 that confers transferable resistance to the compound NVS-ZP7-4. NVS-ZP7-4 altered zinc in the ER, and an analog of the compound photoaffinity labeled ZIP7 in cells, suggesting a direct interaction between the compound and ZIP7. NVS-ZP7-4 is the first reported chemical tool to probe the impact of modulating ER zinc levels and investigate ZIP7 as a novel druggable node in the Notch pathway.


Subject(s)
Cation Transport Proteins/genetics , Endoplasmic Reticulum Stress/physiology , Receptor, Notch1/genetics , Animals , Apoptosis , Carrier Proteins/metabolism , Cation Transport Proteins/metabolism , Cation Transport Proteins/physiology , Cell Line , Cell Transformation, Neoplastic , Endoplasmic Reticulum/physiology , Humans , Mutation , Protein Transport , Receptor, Notch1/physiology , Signal Transduction , Zinc/metabolism
12.
ACS Chem Biol ; 14(1): 20-26, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30461263

ABSTRACT

Using a comprehensive chemical genetics approach, we identified a member of the lignan natural product family, HTP-013, which exhibited significant cytotoxicity across various cancer cell lines. Correlation of compound activity across a panel of reporter gene assays suggested the vacuolar-type ATPase (v-ATPase) as a potential target for this compound. Additional cellular studies and a yeast haploinsufficiency screen strongly supported this finding. Competitive photoaffinity labeling experiments demonstrated that the ATP6V0A2 subunit of the v-ATPase complex binds directly to HTP-013, and further mutagenesis library screening identified resistance-conferring mutations in ATP6V0A2. The positions of these mutations suggest the molecule binds a novel pocket within the domain of the v-ATPase complex responsible for proton translocation. While other mechanisms of v-ATPase regulation have been described, such as dissociation of the complex or inhibition by natural products including bafilomycin A1 and concanamycin, this work provides detailed insight into a distinct binding pocket within the v-ATPase complex.


Subject(s)
Biological Products/metabolism , Biological Products/pharmacology , Vacuolar Proton-Translocating ATPases/metabolism , Amino Acid Sequence , Binding Sites , Biological Products/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , HCT116 Cells , HEK293 Cells , Humans , Molecular Structure , Neurospora crassa/metabolism , Saccharomyces cerevisiae/metabolism , Sequence Homology, Amino Acid , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Vacuolar Proton-Translocating ATPases/chemistry
13.
Angew Chem Int Ed Engl ; 58(4): 1007-1012, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30589164

ABSTRACT

Bromodomain-containing proteins are epigenetic modulators involved in a wide range of cellular processes, from recruitment of transcription factors to pathological disruption of gene regulation and cancer development. Since the druggability of these acetyl-lysine reader domains was established, efforts were made to develop potent and selective inhibitors across the entire family. Here we report the development of a small molecule-based approach to covalently modify recombinant and endogenous bromodomain-containing proteins by targeting a conserved lysine and a tyrosine residue in the variable ZA or BC loops. Moreover, the addition of a reporter tag allowed in-gel visualization and pull-down of the desired bromodomains.


Subject(s)
Carbamates/chemistry , Histones/chemistry , Lysine/chemistry , Protein Domains , Pyridazines/chemistry , Triazoles/chemistry , Acetylation , Amino Acid Sequence , Binding Sites , Conserved Sequence , Molecular Docking Simulation , Protein Binding
14.
ACS Chem Biol ; 13(4): 1066-1081, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29553248

ABSTRACT

We screened a library of bioactive small molecules for activators and inhibitors of innate immune signaling through IRF3 and NFkB pathways with the goals of advancing pathway understanding and discovering probes for immunology research. We used high content screening to measure the translocation from the cytoplasm to nucleus of IRF3 and NFkB in primary human macrophages; these transcription factors play a critical role in the activation of STING and other pro-inflammatory pathways. Our pathway activator screen yielded a diverse set of hits that promoted nuclear translocation of IRF3 and/or NFkB, but the majority of these compounds did not cause activation of downstream pathways. Screening for antagonists of the STING pathway yielded multiple kinase inhibitors, some of which inhibit kinases not previously known to regulate the activity of this pathway. Structure-activity relationships (SARs) and subsequent chemical proteomics experiments suggested that MAPKAPK5 (PRAK) is a kinase that regulates IRF3 translocation in human macrophages. Our work establishes a high content screening approach for measuring pro-inflammatory pathways in human macrophages and identifies novel ways to inhibit such pathways; among the targets of the screen are several molecules that may merit further development as anti-inflammatory drugs.


Subject(s)
Interferon Regulatory Factor-3/antagonists & inhibitors , Macrophages/chemistry , Membrane Proteins/antagonists & inhibitors , NF-kappa B/metabolism , Small Molecule Libraries/pharmacology , Active Transport, Cell Nucleus/drug effects , Drug Evaluation, Preclinical , Humans , Intracellular Signaling Peptides and Proteins/physiology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/physiology , Signal Transduction/drug effects
15.
Methods Mol Biol ; 1647: 1-18, 2017.
Article in English | MEDLINE | ID: mdl-28808992

ABSTRACT

The combination of photoaffinity labeling (PAL) and quantitative chemoproteomics enables the comprehensive, unbiased determination of protein interaction profiles to support target identification of bioactive small molecules. This approach is amenable to cells in culture and compatible with pharmacologically relevant transmembrane target classes like G-protein coupled receptors and ions channels which have been notoriously hard to access by conventional chemoproteomics approaches. Here, we describe a strategy that combines PAL probe titration and competition with excess parental compounds with the goal of enabling the identification of specific interactors as well as assessing the functional relevance of a binding event for the phenotype under investigation.


Subject(s)
Photoaffinity Labels/chemistry , Proteomics/methods , Small Molecule Libraries/analysis , Click Chemistry , Conductometry , Drug Design , GTP-Binding Proteins/analysis , HEK293 Cells , Humans , Mass Spectrometry , Receptors, G-Protein-Coupled/analysis
16.
Sci Rep ; 7: 42728, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28205648

ABSTRACT

Chemogenomic profiling is a powerful and unbiased approach to elucidate pharmacological targets and the mechanism of bioactive compounds. Until recently, genome-wide, high-resolution experiments of this nature have been limited to fungal systems due to lack of mammalian genome-wide deletion collections. With the example of a novel nicotinamide phosphoribosyltransferase (NAMPT) inhibitor, we demonstrate that the CRISPR/Cas9 system enables the generation of transient homo- and heterozygous deletion libraries and allows for the identification of efficacy targets and pathways mediating hypersensitivity and resistance relevant to the compound mechanism of action.


Subject(s)
CRISPR-Cas Systems , Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Cells, Cultured , Enzyme Inhibitors/chemistry , Gene Deletion , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Pharmacogenomic Testing/methods
18.
ACS Chem Biol ; 11(1): 121-31, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26505072

ABSTRACT

Loss-of-function studies are valuable for elucidating kinase function and the validation of new drug targets. While genetic techniques, such as RNAi and genetic knockouts, are highly specific and easy to implement, in many cases post-translational perturbation of kinase activity, specifically pharmacological inhibition, is preferable. However, due to the high degree of structural similarity between kinase active sites and the large size of the kinome, identification of pharmacological agents that are sufficiently selective to probe the function of a specific kinase of interest is challenging, and there is currently no systematic method for accomplishing this goal. Here, we present a modular chemical genetic strategy that uses antibody mimetics as highly selective targeting components of bivalent kinase inhibitors. We demonstrate that it is possible to confer high kinase selectivity to a promiscuous ATP-competitive inhibitor by tethering it to an antibody mimetic fused to the self-labeling protein SNAPtag. With this approach, a potent bivalent inhibitor of the tyrosine kinase Abl was generated. Profiling in complex cell lysates, with competition-based quantitative chemical proteomics, revealed that this bivalent inhibitor possesses greatly enhanced selectivity for its target, BCR-Abl, in K562 cells. Importantly, we show that both components of the bivalent inhibitor can be assembled in K562 cells to block the ability of BCR-Abl to phosphorylate a direct cellular substrate. Finally, we demonstrate the generality of using antibody mimetics as components of bivalent inhibitors by generating a reagent that is selective for the activated state of the serine/threonine kinase ERK2.


Subject(s)
Fusion Proteins, bcr-abl/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Binding Sites , Enzyme Activation/drug effects , Fusion Proteins, bcr-abl/metabolism , Humans , Inhibitory Concentration 50 , K562 Cells , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Models, Molecular , Molecular Structure , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Proteomics
19.
J Fam Issues ; 37(1): 29-52, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26640313

ABSTRACT

The association between childhood family structure and offspring wellbeing is well-documented. Recent research shows that adult children of divorced parents will likely marry someone whose parents' divorced (i.e., family structure homogamy) and are subsequently likely to divorce themselves. This literature has focused primarily on marital unions, despite the rise in cohabitation and nonmarital childbearing. Research suggests that marriage and cohabitation are different types of unions and have different implications for the wellbeing of children. Therefore, we extend the literature by examining the role of family structure homogamy in matching patterns and union stability among unmarried, cohabiting couples. Data from the Fragile Families and Child Wellbeing Study suggest that unmarried, cohabiting mothers and fathers are both more likely to be from nonintact childhood family structures and are significantly more likely to dissolve their unions compared to married parents who both tend to be from intact childhood family structures.

20.
Proteome Sci ; 15: 17, 2016.
Article in English | MEDLINE | ID: mdl-28725163

ABSTRACT

BACKGROUND: Identifying selective kinase inhibitors remains a major challenge. The design of bivalent inhibitors provides a rational strategy for accessing potent and selective inhibitors. While bivalent kinase inhibitors have been successfully designed, no comprehensive assessment of affinity and selectivity for a series of bivalent inhibitors has been performed. Here, we present an evaluation of the structure activity relationship for bivalent kinase inhibitors targeting ABL1. METHODS: Various SNAPtag constructs bearing different specificity ligands were expressed in vitro. Bivalent inhibitor formation was accomplished by synthesizing individual ATP-competitive kinase inhibitors containing a SNAPtag targeting moiety, enabling the spontaneous self-assembly of the bivalent inhibitor. Assembled bivalent inhibitors were incubated with K562 lysates, and then subjected to affinity enrichment using various ATP-competitive inhibitors immobilized to sepharose beads. Resulting eluents were analyzed using Tandem Mass Tag (TMT) labeling and two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS). Relative binding affinity of the bivalent inhibitor was determined by calculating the concentration at which 50% of a given kinase remained bound to the affinity matrix. RESULTS: The profiling of three parental ATP-competitive inhibitors and nine SNAPtag conjugates led to the identification of 349 kinase proteins. In all cases, the bivalent inhibitors exhibited enhanced binding affinity and selectivity for ABL1 when compared to the parental compound conjugated to SNAPtag alone. While the rank order of binding affinity could be predicted by considering the binding affinities of the individual specificity ligands, the resulting affinity of the assembled bivalent inhibitor was not predictable. The results from this study suggest that as the potency of the ATP-competitive ligand increases, the contribution of the specificity ligand towards the overall binding affinity of the bivalent inhibitor decreases. However, the affinity of the specificity components in its interaction with the target is essential for achieving selectivity. CONCLUSION: Through comprehensive chemical proteomic profiling, this work provides the first insight into the influence of ATP-competitive and specificity ligands binding to their intended target on a proteome-wide scale. The resulting data suggest a subtle interplay between the ATP-competitive and specificity ligands that cannot be accounted for by considering the specificity or affinity of the individual components alone.

SELECTION OF CITATIONS
SEARCH DETAIL
...