Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
1.
Food Chem ; 458: 140254, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38954958

ABSTRACT

The high catechin content in summer-to-autumn tea leaves often results in strong, unpleasant tastes, leading to significant resource waste and economic losses due to lignification of unpicked leaves. This study aims to improve the taste quality of summer-to-autumn green teas by combining fine manipulation techniques with hyperspectral observation. Fine manipulation notably enhanced infusion taste quality, particularly in astringency and its aftertaste (aftertasteA). Using Partial Least Squares Discriminant Analysis (PLSDA) on hyperspectral data, 100% prediction accuracy was achieved for dry tea appearance in the near-infrared spectrum. Astringency and aftertasteA correlated with hyperspectral data, allowing precise estimation with over 90% accuracy in both visible and near-infrared spectrums. Epicatechin gallate (ECG) emerged as a key taste compound, enabling non-invasive taste prediction. Practical applications in processing and quality control are demonstrated by the derived equations (Astringency = -0.88 × ECG + 45.401, AftertasteA = -0.353 × ECG + 18.609), highlighting ECG's role in shaping green tea taste profiles.

2.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955379

ABSTRACT

This study evaluated the treatment efficiency of two selected fillers and their combination for improving the water quality of aquaculture wastewater using a packed bed biofilm reactor (PBBR) under various process conditions. The fillers used were nanosheet (NS), activated carbon (AC), and a combination of both. The results indicated that the use of combined fillers and the hydraulic retention time (HRT) of 4 h significantly enhanced water quality in the PBBR. The removal rates of chemical oxygen demand, NO2-─N, total suspended solids(TSS), and chlorophyll a were 63.55%, 74.25%, 62.75%, and 92.85%, respectively. The microbiota analysis revealed that the presence of NS increased the abundance of microbial phyla associated with nitrogen removal, such as Nitrospirae and Proteobacteria. The difference between the M1 and M2 communities was minimal. Additionally, the microbiota in different PBBR samples displayed similar preferences for carbon sources, and carbohydrates and amino acids were the most commonly utilized carbon sources by microbiota. These results indicated that the combination of NS and AC fillers in a PBBR effectively enhanced the treatment efficiency of aquaculture wastewater when operated at an HRT of 4 h. The findings provide valuable insights into optimizing the design of aquaculture wastewater treatment systems.


Subject(s)
Aquaculture , Biofilms , Bioreactors , Wastewater , Water Purification , Biofilms/growth & development , Bioreactors/microbiology , Water Purification/methods , Wastewater/microbiology , Wastewater/chemistry , Nitrogen/metabolism , Charcoal/chemistry , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/growth & development , Biological Oxygen Demand Analysis , Microbiota , Waste Disposal, Fluid/methods , Water Quality
4.
Chem Biol Interact ; 399: 111137, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977166

ABSTRACT

Aberrant activation of thioredoxin reductase (TrxR) is correlated with tumor occurrence and progression, suggesting that TrxR inhibitors can be used as antitumor agents. In this study, we evaluated the anticancer efficacy of eupalinilides B on colorectal cancer cells. Eupalinilides B primarily targeted the conserved selenocysteine 498 residues in TrxR. Besides, it inhibited the enzyme activity in an irreversible manner. After eupalinilides B was used to pharmacologically inhibit TrxR, reactive oxygen species accumulated, and the intracellular redox balance was broken, finally causing oxidative stress-induced tumor cell apoptosis. Significantly, eupalinilides B treatment inhibited in vivo tumor growth. Targeting TrxR by eupalinilides B reveals the new mechanism underlying eupalinilides B and provides insight in developing eupalinilides B as the candidate antitumor chemotherapeutic agent for the treatment of cancer.

5.
PeerJ ; 12: e17520, 2024.
Article in English | MEDLINE | ID: mdl-38887619

ABSTRACT

Habitual dietary changes have the potential to induce alterations in the host's gut microbiota. Mandarin fish (Siniperca chuatsi), an aquatic vertebrate species with distinct feeding habits, were fed with natural feeds (NF) and artificial feeds (AF) to simulate the effects of natural and processed food consumption on host gut microbiota assemblages. The results showed that the alpha diversity index was reduced in the AF diet treatment, as lower abundance and diversity of the gut microbiota were observed, which could be attributed to the colonized microorganisms of the diet itself and the incorporation of plant-derived proteins or carbohydrates. The ß-diversity analysis indicated that the two dietary treatments were associated with distinct bacterial communities. The AF diet had a significantly higher abundance of Bacteroidota and a lower abundance of Actinomycetota, Acidobacteriota, and Chloroflexota compared to the NF group. In addition, Bacteroidota was the biomarker in the gut of mandarin fish from the AF treatment, while Acidobacteriota was distinguished in the NF treatments. Additionally, the increased abundance of Bacteroidota in the AF diet group contributed to the improved fermentation and nutrient assimilation, as supported by the metabolic functional prediction and transcriptome verification. Overall, the present work used the mandarin fish as a vertebrate model to uncover the effects of habitual dietary changes on the evolution of the host microbiota, which may provide potential insights for the substitution of natural foods by processed foods in mammals.


Subject(s)
Animal Feed , Gastrointestinal Microbiome , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Animals , Animal Feed/analysis , Diet/veterinary , Fishes/microbiology , Food, Processed
6.
Horm Metab Res ; 56(6): 455-462, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710215

ABSTRACT

Serum uric acid (UA) and homocysteine (Hcy) are potential biomarkers of systemic lupus erythematosus (SLE). In this study, the expressions of UA and Hcy in SLE patients and the predictive value of these two parameters for lupus nephritis (LN) were studied. A total of 476 SLE patients were recruited to this case-control study, of which 176 SLE patients diagnosed with LN and 300 without LN. Serum UA and Hcy levels were analyzed. Multivariate logistic regression analysis was used to evaluate the relationship between serum UA and Hcy and LN. The receiver operating characteristic (ROC) curves were used to predict the role of combination of serum UA and Hcy in LN. We found that serum UA and Hcy levels in SLE patients with LN were significantly higher than those in controls (p<0.05). Multivariate logistic regressions showed that serum UA (OR+=+1.003, 95+% CI: 1.001-1.006, p+=+0.003), apolipoprotein B (Apo B) (OR+=+21.361, 95+% CI: 2.312-195.373, p+=+0.007) and Hcy (OR+=+1.042, 95+% CI: 1.011-1.080, p+=+0.014) were independent markers of LN. Combined serum UA and Hcy revealed a better result (AUC+=+0.718, 95+% CI: 0.670-0.676, p<0.001) in prediction of LN compared to that of the serum UA (AUC+=+0.710) and Hcy (AUC+=+0.657) independently. In conclusion, serum UA and Hcy could be predictive biomarkers of LN, and joint detection of serum UA and Hcy might be useful in the clinical setting.


Subject(s)
Biomarkers , Homocysteine , Lupus Nephritis , ROC Curve , Uric Acid , Humans , Uric Acid/blood , Homocysteine/blood , Lupus Nephritis/blood , Lupus Nephritis/diagnosis , Female , Biomarkers/blood , Male , Adult , Case-Control Studies , Middle Aged , Prognosis
7.
Article in English | MEDLINE | ID: mdl-38759883

ABSTRACT

In this study, grass carp (33.28 ± 0.05 g) were fed three diets for 8 weeks: control (crude protein [CP] 30%, crude lipid [CL] 6%), low protein (LP; CP16%, CL6%), and low protein with high-fat (LPHF; CP16%, CL10%). The final body weight decreased in the LP and LPHF groups compared to the Control (P < 0.05). Liver triglycerides, total cholesterol, and nonesterified fatty acids were higher in the LP group than the Control, whereas these indexes in the LPHF group were higher than those in the LP group (P < 0.05). The LP group had intestinal barrier damage, while the LPHF group had a slight recovery. TNF-α, IL-8, and IL-1ß content were lower in the LP group than in the Control (P < 0.05), and even higher in the LPHF group (P < 0.05). The expressions of endoplasmic reticulum stress-related genes Activating transcription factor 6 (ATF-6) and Glucose-regulated protein (GRP78) were higher in the LPHF group against the LP group (P < 0.05). The IL-1ß and TNF-α content negatively correlated with intestinal Actinomycetes and Mycobacterium abundance (P < 0.05). The muscle fiber diameter was smaller in both the LP and LPHF groups than the control (P < 0.05), with the LP group showing metabolites related to protein digestion and absorption, and LPHF group exhibiting metabolites related to taste transmission. The results demonstrate reducing dietary protein affects growth, causing liver lipid accumulation, reduced enteritis response, and increased muscle tightness, while increasing fat content accelerates fat accumulation and inflammation.


Subject(s)
Animal Feed , Carps , Liver , Animals , Carps/metabolism , Carps/growth & development , Carps/physiology , Animal Feed/analysis , Liver/metabolism , Liver/drug effects , Dietary Proteins/pharmacology , Fish Proteins/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Intestines/drug effects , Intestines/physiology
8.
Oncol Res ; 32(5): 925-931, 2024.
Article in English | MEDLINE | ID: mdl-38686057

ABSTRACT

To confirm the relationship between Circ_0003855 and EC, we purchased the Human esophageal carcinoma cell line Eca109 and normal human esophageal epithelial cells HEEC, and the expression levels of Circ_0003855, miR-622, and FLOT1 were detected. The results show that Circ_0003855 and FLOT1 were highly expressed in Eca109 cells, while miR-622 was lowly expressed (p < 0.05). Subsequently, Circ_0003855 small interfering RNA (si-Circ_0003855) and its negative control (si-NC) were used to detect changes in cellular biological behaviors. We found that the activity of Eca109 cells was reduced after interfering with the expression of Circ_0003855, and miR-622 expression was elevated, while FLOT1 was decreased (p < 0.05). Additionally, si-Circ_0003855 and miR-622 inhibitor sequence (miR-622-inhibition) were co-transfected into cells with miR-622-inhibition alone, and untreated Eca109 cells were used as a control to detect the expression of FLOT1. Co-transfection of si-Circ_0003855 and miR-622-inhibition showed no significant difference in FLOT1 expression compared to the control cells (p > 0.05). Synthesizing the results of these experiments above, we believe that interfering with the expression of Circ_0003855 can inhibit the activity of EC cells, and its mechanism is related to miR-622 and FLOT1.


Subject(s)
Disease Progression , Esophageal Neoplasms , MicroRNAs , RNA, Circular , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Membrane Proteins/genetics , Membrane Proteins/metabolism , MicroRNAs/genetics , RNA, Circular/genetics
9.
Sci China Life Sci ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38679667

ABSTRACT

Engineering disease-resistant plants can be a powerful solution to the issue of food security. However, it requires addressing two fundamental questions: what genes to express and how to control their expressions. To find a solution, we screen CRISPR-edited upstream open reading frame (uORF) variants in rice, aiming to optimize translational control of disease-related genes. By switching uORF types of the 5'-leader from Arabidopsis TBF1, we modulate the ribosome accessibility to the downstream firefly luciferase. We assume that by switching uORF types using CRISPR, we could generate uORF variants with alternative translation efficiency (CRISPR-aTrE-uORF). These variants, capable of boosting translation for resistance-associated genes and dampening it for susceptible ones, can help pinpoint previously unidentified genes with optimal expression levels. To test the assumption, we screened edited uORF variants and found that enhanced translational suppression of the plastic glutamine synthetase 2 can provide broad-spectrum disease resistance in rice with minimal fitness costs. This strategy, which involves modifying uORFs from none to some, or from some to none or different ones, demonstrates how translational agriculture can speed up the development of disease-resistant crops. This is vital for tackling the food security challenges we face due to growing populations and changing climates.

10.
Heliyon ; 10(7): e28423, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38623237

ABSTRACT

Diets with high carbohydrate (HC) was reported to have influence on appetite and intermediary metabolism in fish. To illustrate whether betaine could improve appetite and glucose-lipid metabolism in aquatic animals, mandarin fish (Siniperca chuatsi) were fed with the HC diets with or without betaine for 8 weeks. The results suggested that betaine enhanced feed intake by regulating the hypothalamic appetite genes. The HC diet-induced downregulation of AMPK and appetite genes was also positively correlated with the decreased autophagy genes, suggesting a possible mechanism that AMPK/mTOR signaling might regulate appetite through autophagy. The HC diet remarkably elevated transcriptional levels of genes related to lipogenesis, while betaine alleviated the HC-induced hepatic lipid deposition. Additionally, betaine supplementation tended to store the energy storage as hepatic glycogen. Our findings proposed the possible mechanism for appetite regulation through autophagy via AMPK/mTOR, and demonstrated the feasibility of betaine as an aquafeed additive to regulate appetite and intermediary metabolism in fish.

12.
Toxins (Basel) ; 16(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38535815

ABSTRACT

Microcystin-LR (MC-LR) is a cyanobacterial metabolite produced during cyanobacterial blooms and is toxic to aquatic animals, and the liver is the main targeted organ of MC-LR. To comprehensively understand the toxicity mechanism of chronic exposure to environmental levels of MC-LR on the liver of fish, juvenile Nile tilapia were exposed to 0 µg/L (control), 1 µg/L (M1), 3 µg/L (M3), 10 µg/L (M10), and 30 µg/L (M30) MC-LR for 60 days. Then, the liver hepatotoxicity induced by MC-LR exposure was systematically evaluated via histological and biochemical determinations, and the underlying mechanisms were explored through combining analysis of biochemical parameters, multi-omics (transcriptome and metabolome), and gene expression. The results exhibited that chronic MC-LR exposure caused slight liver minor structural damage and lipid accumulation in the M10 group, while resulting in serious histological damage and lipid accumulation in the M30 group, indicating obvious hepatotoxicity, which was confirmed by increased toxicity indexes (i.e., AST, ALT, and AKP). Transcriptomic and metabolomic analysis revealed that chronic MC-LR exposure induced extensive changes in gene expression and metabolites in six typical pathways, including oxidative stress, apoptosis, autophagy, amino acid metabolism, primary bile acid biosynthesis, and lipid metabolism. Taken together, chronic MC-LR exposure induced oxidative stress, apoptosis, and autophagy, inhibited primary bile acid biosynthesis, and caused fatty deposition in the liver of Nile tilapia.


Subject(s)
Chemical and Drug Induced Liver Injury , Cichlids , Marine Toxins , Microcystins , Animals , Multiomics , Bile Acids and Salts , Lipids
13.
Traffic Inj Prev ; 25(3): 354-363, 2024.
Article in English | MEDLINE | ID: mdl-38346170

ABSTRACT

OBJECTIVES: This paper aims to address the challenge of low accuracy in single-modal driver anger recognition by introducing a multimodal driver anger recognition model. The primary objective is to develop a multimodal fusion recognition method for identifying driver anger, focusing on electrocardiographic (ECG) signals and driving behavior signals. METHODS: Emotion-inducing experiments were performed employing a driving simulator to capture both ECG signals and driving behavioral signals from drivers experiencing both angry and calm moods. An analysis of characteristic relationships and feature extraction was conducted on ECG signals and driving behavior signals related to driving anger. Seventeen effective feature indicators for recognizing driving anger were chosen to construct a dataset for driver anger. A binary classification model for recognizing driving anger was developed utilizing the Support Vector Machine (SVM) algorithm. RESULTS: Multimodal fusion demonstrated significant advantages over single-modal approaches in emotion recognition. The SVM-DS model using decision-level fusion had the highest accuracy of 84.75%. Compared with the driver anger emotion recognition model based on unimodal ECG features, unimodal driving behavior features, and multimodal feature layer fusion, the accuracy increased by 9.10%, 4.15%, and 0.8%, respectively. CONCLUSIONS: The proposed multimodal recognition model, incorporating ECG and driving behavior signals, effectively identifies driving anger. The research results provide theoretical and technical support for the establishment of a driver anger system.


Subject(s)
Accidents, Traffic , Automobile Driving , Humans , Anger , Electrocardiography , Support Vector Machine , Algorithms , Automobile Driving/psychology
14.
Transfus Med Hemother ; 51(1): 32-40, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38314240

ABSTRACT

Background: CD36 deficiency is closely associated with fetal/neonatal alloimmune thrombocytopenia, platelet transfusion refractoriness, and other hemorrhage disorders, particularly in Asian and African populations. There is a clinical need for rapid and high-throughput methods of platelet CD36 (pCD36) phenotyping to improve the availability of CD36 typing of donors and assist clinical blood transfusions for patients with anti-CD36 antibodies. Such methods can also support the establishment of databases of pCD36-negative phenotypes. Study Design and Methods: A sandwich enzyme-linked immunosorbent assay (ELISA) for CD36 phenotyping of human platelets was developed using anti-CD36 monoclonal antibodies. The reliability of the assay was evaluated by calculating the intra-assay and inter-assay coefficients of variation (CV). A total of 1,691 anticoagulant whole blood samples from healthy blood donors were randomly selected. PCD36 expression was measured using a sandwich ELISA. PCD36 deficiency was confirmed by flow cytometry (FC). Mutations underlying pCD36 deficiency were identified using polymerase chain reaction sequence-based typing (PCR-SBT). Results: The sandwich ELISA for pCD36 phenotyping had high reliability (intra-assay CV, 2.1-4.8%; inter-assay CV, 2.3-5.2%). The sandwich ELISA was used to screen for CD36 expression on platelets isolated from 1,691 healthy blood donors. Of these, 36 samples were pCD36-negative. FC demonstrated absence of CD36 expression on monocytes in three of the 36 cases. In the present study population, the frequency of CD36 deficiency was 2.13% (36/1,691), of which 0.18% (3/1,691) was type I deficiency and 1.95% (33/1,691) was type II deficiency. In addition, we used PCR-SBT to characterize the gene mutations in exons 3-14 of the CD36 gene in 27 cases of CD36 deficiency and discovered 10 types of mutations in 13 pCD36-negative samples. Conclusion: The present study describes the development and characterization of a highly reliable sandwich ELISA for high-throughput screening for pCD36 expression. This novel method is feasible for clinical applications and provides a useful tool for the establishment of databases of pCD36-negative phenotype donors.

15.
Antimicrob Agents Chemother ; 68(2): e0093723, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38169282

ABSTRACT

Entering a dormant state is a prevailing mechanism used by bacterial cells to transiently evade antibiotic attacks and become persisters. The dynamic progression of bacterial dormancy depths driven by protein aggregation has been found to be critical for antibiotic persistence in recent years. However, our current understanding of the endogenous genes that affects dormancy depth remains limited. Here, we discovered a novel role of phage shock protein A (pspA) gene in modulating bacterial dormancy depth. Deletion of pspA of Escherichia coli resulted in increased bacterial dormancy depths and prolonged lag times for resuscitation during the stationary phase. ∆pspA exhibited a higher persister ratio compared to the wild type when challenged with various antibiotics. Microscopic images revealed that ∆pspA showed accelerated formation of protein aggresomes, which were collections of endogenous protein aggregates. Time-lapse imaging established the positive correlation between protein aggregation and antibiotic persistence of ∆pspA at the single-cell level. To investigate the molecular mechanism underlying accelerated protein aggregation, we performed transcriptome profiling and found the increased abundance of chaperons and a general metabolic slowdown in the absence of pspA. Consistent with the transcriptomic results, the ∆pspA strain showed a decreased cellular ATP level, which could be rescued by glucose supplementation. Then, we verified that replenishment of cellular ATP levels by adding glucose could inhibit protein aggregation and reduce persister formation in ∆pspA. This study highlights the novel role of pspA in maintaining proteostasis, regulating dormancy depth, and affecting antibiotic persistence during stationary phase.


Subject(s)
Anti-Bacterial Agents , Protein Aggregates , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Adenosine Triphosphate/metabolism , Glucose/metabolism
16.
Plant Biotechnol J ; 22(5): 1352-1371, 2024 May.
Article in English | MEDLINE | ID: mdl-38100249

ABSTRACT

Lipids and lipid metabolites have essential roles in plant-pathogen interactions. GDSL-type lipases are involved in lipid metabolism modulating lipid homeostasis. Some plant GDSLs modulate lipid metabolism altering hormone signal transduction to regulate host-defence immunity. Here, we functionally characterized a rice lipase, OsGELP77, promoting both immunity and yield. OsGELP77 expression was induced by pathogen infection and jasmonic acid (JA) treatment. Overexpression of OsGELP77 enhanced rice resistance to both bacterial and fungal pathogens, while loss-of-function of osgelp77 showed susceptibility. OsGELP77 localizes to endoplasmic reticulum and is a functional lipase hydrolysing universal lipid substrates. Lipidomics analyses demonstrate that OsGELP77 is crucial for lipid metabolism and lipid-derived JA homeostasis. Genetic analyses confirm that OsGELP77-modulated resistance depends on JA signal transduction. Moreover, population genetic analyses indicate that OsGELP77 expression level is positively correlated with rice resistance against pathogens. Three haplotypes were classified based on nucleotide polymorphisms in the OsGELP77 promoter where OsGELP77Hap3 is an elite haplotype. Three OsGELP77 haplotypes are differentially distributed in wild and cultivated rice, while OsGELP77Hap3 has been broadly pyramided for hybrid rice development. Furthermore, quantitative trait locus (QTL) mapping and resistance evaluation of the constructed near-isogenic line validated OsGELP77, a QTL for broad-spectrum disease resistance. In addition, OsGELP77-modulated lipid metabolism promotes JA accumulation facilitating grain yield. Notably, the hub defence regulator OsWRKY45 acts upstream of OsGELP77 by initiating the JA-dependent signalling to trigger immunity. Together, OsGELP77, a QTL contributing to immunity and yield, is a candidate for breeding broad-spectrum resistant and high-yielding rice.


Subject(s)
Disease Resistance , Oryza , Disease Resistance/genetics , Lipase/genetics , Lipase/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Plant Breeding , Lipids , Plant Diseases/microbiology
18.
Front Chem ; 11: 1351829, 2023.
Article in English | MEDLINE | ID: mdl-38156019

ABSTRACT

[This corrects the article DOI: 10.3389/fchem.2022.845363.].

19.
ACS Appl Mater Interfaces ; 15(46): 53651-53664, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37944056

ABSTRACT

The special structure of perovskite-like compounds allows the existence of some open spaces in the crystals that play an important role in their crystal function enhancement and can accommodate active oxygen, which helps to solve some problems in the field of corrosion prevention. The magnetic lanthanum cuprate was obtained through the doping of Co2+ and Sr2+, and compared with La2CuO4 and epoxy resin, its corrosion resistance was improved by 215.2 and 566.7%, respectively. The micromagnetic field in the crystal interfered with the state of motion of the electrons and prolonged their transport path. High concentration doping and substitution of unequal states led to the formation of oxygen vacancy defects, which could trap active oxygen molecules and inhibit cathodic corrosion reactions. The unique alternating interlayer structure of perovskite-like compounds was conducive to the release of Cu2+, thus forming a more stable passivator on the surface of the coating. La1.96Sr0.04Cu0.98Co0.02O4 had both magnetic properties and structural advantages, which enhanced the shielding property of epoxy resin and expanded the application of perovskite-like compounds in the field of corrosion prevention.

20.
J Mol Histol ; 54(6): 543-557, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37874501

ABSTRACT

Type 2 diabetes mellitus (T2DM) is one of most common metabolic diseases and continues to be a leading cause of death worldwide. Although great efforts have been made to elucidate the pathogenesis of diabetes, the underlying mechanism still remains unclear. Notably, overwhelming evidence has demonstrated that mitochondria are tightly correlated with the development of T2DM, and the defects of mitochondrial function in peripheral insulin-responsive tissues, such as skeletal muscle, liver and adipose tissue, are crucial drivers of T2DM. Furthermore, exercise training is considered as an effective stimulus for improving insulin sensitivity and hence is regarded as the best strategy to prevent and treat T2DM. Although the precise mechanisms by which exercise alleviates T2DM are not fully understood, mitochondria may be critical for the beneficial effects of exercise.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/metabolism , Mitochondria/metabolism , Insulin Resistance/physiology , Muscle, Skeletal , Exercise
SELECTION OF CITATIONS
SEARCH DETAIL