Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
2.
Mol Metab ; 80: 101880, 2024 Feb.
Article En | MEDLINE | ID: mdl-38218536

OBJECTIVE: Glucagon-like peptide 1 (GLP-1) receptor agonists reduce food intake, producing remarkable weight loss in overweight and obese individuals. While much of this weight loss is fat mass, there is also a loss of lean mass, similar to other approaches that induce calorie deficit. Targeting signaling pathways that regulate skeletal muscle hypertrophy is a promising avenue to preserve lean mass and modulate body composition. Myostatin and Activin A are TGFß-like ligands that signal via the activin type II receptors (ActRII) to antagonize muscle growth. Pre-clinical and clinical studies demonstrate that ActRII blockade induces skeletal muscle hypertrophy and reduces fat mass. In this manuscript, we test the hypothesis that combined ActRII blockade and GLP-1 receptor agonism will preserve muscle mass, leading to improvements in skeletomuscular and metabolic function and enhanced fat loss. METHODS: In this study, we explore the therapeutic potential of bimagrumab, a monoclonal antibody against ActRII, to modify body composition alone and during weight loss induced by GLP-1 receptor agonist semaglutide in diet-induced obese mice. Mechanistically, we define the specific role of the anabolic kinase Akt in mediating the hypertrophic muscle effects of ActRII inhibition in vivo. RESULTS: Treatment of obese mice with bimagrumab induced a ∼10 % increase in lean mass while simultaneously decreasing fat mass. Daily treatment of obese mice with semaglutide potently decreased body weight; this included a significant decrease in both muscle and fat mass. Combination treatment with bimagrumab and semaglutide led to superior fat mass loss while simultaneously preserving lean mass despite reduced food intake. Treatment with both drugs was associated with improved metabolic outcomes, and increased lean mass was associated with improved exercise performance. Deletion of both Akt isoforms in skeletal muscle modestly reduced, but did not prevent, muscle hypertrophy driven by ActRII inhibition. CONCLUSIONS: Collectively, these data demonstrate that blockade of ActRII signaling improves body composition and metabolic parameters during calorie deficit driven by GLP-1 receptor agonism and demonstrate the existence of Akt-independent pathways supporting muscle hypertrophy in the absence of ActRII signaling.


Activin Receptors, Type II , Antibodies, Monoclonal, Humanized , Glucagon-Like Peptide-1 Receptor , Obesity , Proto-Oncogene Proteins c-akt , Weight Loss , Animals , Mice , Activin Receptors, Type II/antagonists & inhibitors , Activin Receptors, Type II/metabolism , Activins/metabolism , Antibodies, Blocking/metabolism , Antibodies, Blocking/pharmacology , Antibodies, Blocking/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Hypertrophy/metabolism , Mice, Obese , Muscle, Skeletal/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Antibodies, Monoclonal, Humanized/administration & dosage , Obesity/drug therapy
3.
J Clin Invest ; 134(7)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38290087

In response to a meal, insulin drives hepatic glycogen synthesis to help regulate systemic glucose homeostasis. The mechanistic target of rapamycin complex 1 (mTORC1) is a well-established insulin target and contributes to the postprandial control of liver lipid metabolism, autophagy, and protein synthesis. However, its role in hepatic glucose metabolism is less understood. Here, we used metabolomics, isotope tracing, and mouse genetics to define a role for liver mTORC1 signaling in the control of postprandial glycolytic intermediates and glycogen deposition. We show that mTORC1 is required for glycogen synthase activity and glycogenesis. Mechanistically, hepatic mTORC1 activity promotes the feeding-dependent induction of Ppp1r3b, a gene encoding a phosphatase important for glycogen synthase activity whose polymorphisms are linked to human diabetes. Reexpression of Ppp1r3b in livers lacking mTORC1 signaling enhances glycogen synthase activity and restores postprandial glycogen content. mTORC1-dependent transcriptional control of Ppp1r3b is facilitated by FOXO1, a well characterized transcriptional regulator involved in the hepatic response to nutrient intake. Collectively, we identify a role for mTORC1 signaling in the transcriptional regulation of Ppp1r3b and the subsequent induction of postprandial hepatic glycogen synthesis.


Glycogen Synthase , Liver Glycogen , Mechanistic Target of Rapamycin Complex 1 , Protein Phosphatase 1 , Animals , Humans , Mice , Glycogen/genetics , Glycogen/metabolism , Glycogen Synthase/metabolism , Insulin/metabolism , Liver/metabolism , Liver Glycogen/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Protein Phosphatase 1/metabolism , Postprandial Period
4.
medRxiv ; 2024 Feb 05.
Article En | MEDLINE | ID: mdl-37693606

The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts. Integrating childhood obesity GWAS summary statistics with our existing 3D genomic datasets for 57 human cell types, consisting of high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq, and RNA-seq, we applied stratified LD score regression and calculated the proportion of genome-wide SNP heritability attributable to cell type-specific features, revealing pancreatic alpha cell enrichment as the most statistically significant. Subsequent chromatin contact-based fine-mapping was carried out for genome-wide significant childhood obesity loci and their linkage disequilibrium proxies to implicate effector genes, yielded the most abundant number of candidate variants and target genes at the BDNF, ADCY3, TMEM18 and FTO loci in skeletal muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel implicated effector gene, ALKAL2 - an inflammation-responsive gene in nerve nociceptors - was observed at the key TMEM18 locus across multiple immune cell types. Interestingly, this observation was also supported through colocalization analysis using expression quantitative trait loci (eQTL) derived from the Genotype-Tissue Expression (GTEx) dataset, supporting an inflammatory and neurologic component to the pathogenesis of childhood obesity. Our comprehensive appraisal of 3D genomic datasets generated in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis.

5.
Diabetes ; 73(1): 120-134, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37874683

Wound healing is a complex, highly regulated process and is substantially disrupted by diabetes. We show here that human wound healing induces specific epigenetic changes that are exacerbated by diabetes in an animal model. We identified epigenetic changes and gene expression alterations that significantly reduce reepithelialization of skin and mucosal wounds in an in vivo model of diabetes, which were dramatically rescued in vivo by blocking these changes. We demonstrate that high glucose altered FOXO1-matrix metallopeptidase 9 (MMP9) promoter interactions through increased demethylation and reduced methylation of DNA at FOXO1 binding sites and also by promoting permissive histone-3 methylation. Mechanistically, high glucose promotes interaction between FOXO1 and RNA polymerase-II (Pol-II) to produce high expression of MMP9 that limits keratinocyte migration. The negative impact of diabetes on reepithelialization in vivo was blocked by specific DNA demethylase inhibitors in vivo and by blocking permissive histone-3 methylation, which rescues FOXO1-impaired keratinocyte migration. These studies point to novel treatment strategies for delayed wound healing in individuals with diabetes. They also indicate that FOXO1 activity can be altered by diabetes through epigenetic changes that may explain other diabetic complications linked to changes in diabetes-altered FOXO1-DNA interactions. ARTICLE HIGHLIGHTS: FOXO1 expression in keratinocytes is needed for normal wound healing. In contrast, FOXO1 expression interferes with the closure of diabetic wounds. Using matrix metallopeptidase 9 as a model system, we found that high glucose significantly increased FOXO1-matrix metallopeptidase 9 interactions via increased DNA demethylation, reduced DNA methylation, and increased permissive histone-3 methylation in vitro. Inhibitors of DNA demethylation and permissive histone-3 methylation improved the migration of keratinocytes exposed to high glucose in vitro and the closure of diabetic skin and mucosal wounds in vivo. Inhibition of epigenetic enzymes that alter FOXO1-induced gene expression dramatically improves diabetic healing and may apply to other conditions where FOXO1 has a detrimental role in diabetic complications.


Diabetes Complications , Diabetes Mellitus, Experimental , Animals , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Histones/metabolism , Diabetes Mellitus, Experimental/metabolism , Keratinocytes/metabolism , Diabetes Complications/metabolism , Epigenesis, Genetic , Glucose/metabolism , DNA/metabolism , Re-Epithelialization
6.
J Clin Invest ; 134(4)2023 Dec 05.
Article En | MEDLINE | ID: mdl-38051585

Worldwide, over 800 million people are affected by kidney disease, yet its pathogenesis remains elusive, hindering the development of novel therapeutics. In this study, we used kidney-specific expression of quantitative traits and single-nucleus open chromatin analysis to show that genetic variants linked to kidney dysfunction on chromosome 20 target the acyl-CoA synthetase short-chain family 2 (ACSS2). By generating ACSS2-KO mice, we demonstrated their protection from kidney fibrosis in multiple disease models. Our analysis of primary tubular cells revealed that ACSS2 regulated de novo lipogenesis (DNL), causing NADPH depletion and increasing ROS levels, ultimately leading to NLRP3-dependent pyroptosis. Additionally, we discovered that pharmacological inhibition or genetic ablation of fatty acid synthase safeguarded kidney cells against profibrotic gene expression and prevented kidney disease in mice. Lipid accumulation and the expression of genes related to DNL were elevated in the kidneys of patients with fibrosis. Our findings pinpoint ACSS2 as a critical kidney disease gene and reveal the role of DNL in kidney disease.


Acetate-CoA Ligase , Kidney Diseases , Lipogenesis , Animals , Humans , Mice , Acetate-CoA Ligase/genetics , Fibrosis , Kidney/metabolism , Kidney Diseases/genetics , Kidney Diseases/metabolism , Kidney Tubules/metabolism , Lipogenesis/genetics
7.
Compr Physiol ; 13(3): 4785-4809, 2023 06 26.
Article En | MEDLINE | ID: mdl-37358513

The incidence of obesity, insulin resistance, and type II diabetes (T2DM) continues to rise worldwide. The liver is a central insulin-responsive metabolic organ that governs whole-body metabolic homeostasis. Therefore, defining the mechanisms underlying insulin action in the liver is essential to our understanding of the pathogenesis of insulin resistance. During periods of fasting, the liver catabolizes fatty acids and stored glycogen to meet the metabolic demands of the body. In postprandial conditions, insulin signals to the liver to store excess nutrients into triglycerides, cholesterol, and glycogen. In insulin-resistant states, such as T2DM, hepatic insulin signaling continues to promote lipid synthesis but fails to suppress glucose production, leading to hypertriglyceridemia and hyperglycemia. Insulin resistance is associated with the development of metabolic disorders such as cardiovascular and kidney disease, atherosclerosis, stroke, and cancer. Of note, nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases encompassing fatty liver, inflammation, fibrosis, and cirrhosis, is linked to abnormalities in insulin-mediated lipid metabolism. Therefore, understanding the role of insulin signaling under normal and pathologic states may provide insights into preventative and therapeutic opportunities for the treatment of metabolic diseases. Here, we provide a review of the field of hepatic insulin signaling and lipid regulation, including providing historical context, detailed molecular mechanisms, and address gaps in our understanding of hepatic lipid regulation and the derangements under insulin-resistant conditions. © 2023 American Physiological Society. Compr Physiol 13:4785-4809, 2023.


Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Insulin/metabolism , Insulin Resistance/physiology , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Lipid Metabolism , Triglycerides/metabolism , Glycogen/metabolism , Homeostasis
8.
PLoS One ; 18(5): e0281954, 2023.
Article En | MEDLINE | ID: mdl-37134024

BACKGROUND AND AIMS: There is significant overlap between non-alcoholic fatty liver disease (NAFLD) and alcohol-associated liver disease (ALD) with regards to risk factors and disease progression. However, the mechanism by which fatty liver disease arises from concomitant obesity and overconsumption of alcohol (syndrome of metabolic and alcohol-associated fatty liver disease; SMAFLD), is not fully understood. METHODS: Male C57BL6/J mice were fed chow diet (Chow) or high-fructose, high-fat, high-cholesterol diet (FFC) for 4 weeks, then administered either saline or ethanol (EtOH, 5% in drinking water) for another 12 weeks. The EtOH treatment also consisted of a weekly 2.5 g EtOH/kg body weight gavage. Markers for lipid regulation, oxidative stress, inflammation, and fibrosis were measured by RT-qPCR, RNA-seq, Western blot, and metabolomics. RESULTS: Combined FFC-EtOH induced more body weight gain, glucose intolerance, steatosis, and hepatomegaly compared to Chow, EtOH, or FFC. Glucose intolerance by FFC-EtOH was associated with decreased hepatic protein kinase B (AKT) protein expression and increased gluconeogenic gene expression. FFC-EtOH increased hepatic triglyceride and ceramide levels, plasma leptin levels, hepatic Perilipin 2 protein expression, and decreased lipolytic gene expression. FFC and FFC-EtOH also increased AMP-activated protein kinase (AMPK) activation. Finally, FFC-EtOH enriched the hepatic transcriptome for genes involved in immune response and lipid metabolism. CONCLUSIONS: In our model of early SMAFLD, we observed that the combination of an obesogenic diet and alcohol caused more weight gain, promoted glucose intolerance, and contributed to steatosis by dysregulating leptin/AMPK signaling. Our model demonstrates that the combination of an obesogenic diet with a chronic-binge pattern alcohol intake is worse than either insult alone.


Glucose Intolerance , Liver Diseases, Alcoholic , Non-alcoholic Fatty Liver Disease , Mice , Animals , Male , Leptin/metabolism , Diet, Western/adverse effects , Glucose Intolerance/metabolism , AMP-Activated Protein Kinases/metabolism , Ethanol/toxicity , Ethanol/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Lipid Metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
10.
iScience ; 25(6): 104410, 2022 Jun 17.
Article En | MEDLINE | ID: mdl-35663017

The insulin responsive Akt and FoxO1 signaling axis is a key regulator of the hepatic transcriptional response to nutrient intake. Here, we used global run-on sequencing (GRO-seq) to measure the nascent transcriptional response to fasting and refeeding as well as define the specific role of hepatic Akt and FoxO1 signaling in mediating this response. We identified 599 feeding-regulated transcripts, as well as over 6,000 eRNAs, and mapped their dependency on Akt and FoxO1 signaling. Further, we identified several feeding-regulated lncRNAs, including the lncRNA Gm11967, whose expression was dependent upon the liver Akt-FoxO1 axis. Restoring Gm11967 expression in mice lacking liver Akt improved insulin sensitivity and induced glucokinase protein expression, indicating that Akt-dependent control of Gm11967 contributes to the translational control of glucokinase. More broadly, we have generated a unique genome-wide dataset that defines the feeding and Akt/FoxO1-dependent transcriptional changes in response to nutrient availability.

11.
Science ; 376(6590): eabf8271, 2022 04 15.
Article En | MEDLINE | ID: mdl-35420934

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) remain without effective therapies. The mechanistic target of rapamycin complex 1 (mTORC1) pathway is a potential therapeutic target, but conflicting interpretations have been proposed for how mTORC1 controls lipid homeostasis. We show that selective inhibition of mTORC1 signaling in mice, through deletion of the RagC/D guanosine triphosphatase-activating protein folliculin (FLCN), promotes activation of transcription factor E3 (TFE3) in the liver without affecting other mTORC1 targets and protects against NAFLD and NASH. Disease protection is mediated by TFE3, which both induces lipid consumption and suppresses anabolic lipogenesis. TFE3 inhibits lipogenesis by suppressing proteolytic processing and activation of sterol regulatory element-binding protein-1c (SREBP-1c) and by interacting with SREBP-1c on chromatin. Our data reconcile previously conflicting studies and identify selective inhibition of mTORC1 as a potential approach to treat NASH and NAFLD.


Mechanistic Target of Rapamycin Complex 1 , Non-alcoholic Fatty Liver Disease , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Gene Deletion , Liver/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Non-alcoholic Fatty Liver Disease/therapy , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
12.
Endocrinology ; 163(5)2022 05 01.
Article En | MEDLINE | ID: mdl-35303074

The hepatic transcription factor forkhead box O1 (FOXO1) is a critical regulator of hepatic and systemic insulin sensitivity. Previous work by our group and others demonstrated that genetic inhibition of FOXO1 improves insulin sensitivity both in genetic and dietary mouse models of metabolic disease. Mechanistically, this is due in part to cell nonautonomous control of adipose tissue insulin sensitivity. However, the mechanisms mediating this liver-adipose tissue crosstalk remain ill defined. One candidate hepatokine controlled by hepatic FOXO1 is fibroblast growth factor 21 (FGF21). Preclinical and clinical studies have explored the potential of pharmacological FGF21 as an antiobesity and antidiabetic therapy. In this manuscript, we performed acute loss-of-function experiments to determine the role of hepatocyte-derived FGF21 in glucose homeostasis and insulin tolerance both in control and mice lacking hepatic insulin signaling. Surprisingly, acute deletion of FGF21 did not alter glucose tolerance, insulin tolerance, or adipocyte lipolysis in either liver-specific FGF21KO mice or mice lacking hepatic AKT-FOXO1-FGF21, suggesting a permissive role for endogenous FGF21 in the regulation of systemic glucose homeostasis and insulin tolerance in mice. In addition, these data indicate that liver FOXO1 controls glucose homeostasis independently of liver-derived FGF21.


Insulin Resistance , Lipolysis , Animals , Fibroblast Growth Factors/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Glucose/metabolism , Homeostasis/genetics , Insulin/metabolism , Insulin Resistance/genetics , Lipolysis/genetics , Liver/metabolism , Mice , Mice, Knockout
13.
Cell Mol Gastroenterol Hepatol ; 13(6): 1625-1647, 2022.
Article En | MEDLINE | ID: mdl-35240344

BACKGROUND & AIMS: Dysregulation of liver lipid metabolism is associated with the development and progression of nonalcoholic fatty liver disease, a spectrum of liver diseases including nonalcoholic steatohepatitis (NASH). In the liver, insulin controls lipid homeostasis by increasing triglyceride (TAG) synthesis, suppressing fatty acid oxidation, and enhancing TAG export via very low-density lipoproteins. Downstream of insulin signaling, the mechanistic target of rapamycin complex 1 (mTORC1), is a key regulator of lipid metabolism. Here, we define the role of hepatic mTORC1 activity in mouse models of NASH and investigate the mTORC1-dependent mechanisms responsible for protection against liver damage in NASH. METHODS: Utilizing 2 rodent NASH-promoting diets, we demonstrate that hepatic mTORC1 activity was reduced in mice with NASH, whereas under conditions of insulin resistance and benign fatty liver, mTORC1 activity was elevated. To test the beneficial effects of hepatic mTORC1 activation in mouse models of NASH, we employed an acute, liver-specific knockout model of TSC1 (L-TSC-KO), a negative regulator of mTORC1. RESULTS: L-TSC-KO mice are protected from and have improved markers of NASH including reduced steatosis, decreased circulating transaminases, and reduced expression of inflammation and fibrosis genes. Mechanistically, protection from hepatic inflammation and fibrosis by constitutive mTORC1 activity occurred via promotion of the phosphatidylcholine synthesizing enzyme, CCTα, and enhanced very low-density lipoprotein-triglyceride export. Additionally, activation of mTORC1 protected from hepatic steatosis via negative feedback of the mTORC2-AKT-FOXO-SREBP1c lipogenesis axis. CONCLUSIONS: Collectively, this study identifies a protective role for liver mTORC1 signaling in the initiation and progression of NASH in mice via dual control of lipid export and synthesis.


Non-alcoholic Fatty Liver Disease , Animals , Fibrosis , Inflammation , Insulin/metabolism , Lipogenesis , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/metabolism
15.
J Cachexia Sarcopenia Muscle ; 13(1): 495-514, 2022 02.
Article En | MEDLINE | ID: mdl-34751006

BACKGROUND: Skeletomuscular diseases result in significant muscle loss and decreased performance, paralleled by a loss in mitochondrial and oxidative capacity. Insulin and insulin-like growth factor-1 (IGF-1) are two potent anabolic hormones that activate a host of signalling intermediates including the serine/threonine kinase AKT to influence skeletal muscle physiology. Defective AKT signalling is associated with muscle pathology, including cachexia, sarcopenia, and disuse; however, the mechanistic underpinnings remain unresolved. METHODS: To elucidate the role of AKT signalling in muscle mass and physiology, we generated both congenital and inducible mouse models of skeletal muscle-specific AKT deficiency. To understand the downstream mechanisms mediating AKT's effects on muscle biology, we generated mice lacking AKT1/2 and FOXO1 (M-AKTFOXO1TKO and M-indAKTFOXO1TKO) to inhibit downstream FOXO1 signalling, AKT1/2 and TSC1 (M-AKTTSCTKO and M-indAKTTSCTKO) to activate mTORC1, and AKT1/2, FOXO1, and TSC1 (M-QKO and M-indQKO) to simultaneously activate mTORC1 and inhibit FOXO1 in AKT-deficient skeletal muscle. Muscle proteostasis and physiology were assessed using multiple assays including metabolic labelling, mitochondrial function, fibre typing, ex vivo physiology, and exercise performance. RESULTS: Here, we show that genetic ablation of skeletal muscle AKT signalling resulted in decreased muscle mass and a loss of oxidative metabolism and muscle performance. Specifically, deletion of muscle AKT activity during development or in adult mice resulted in a significant reduction in muscle growth by 30-40% (P  < 0.0001; n = 12-20) and 15% (P < 0.01 and P < 0.0001; n = 20-30), respectively. Interestingly, this reduction in muscle mass was primarily due to an ~40% reduction in protein synthesis in both M-AKTDKO and M-indAKTDKO muscles (P < 0.05 and P < 0.01; n = 12-20) without significant changes in proteolysis or autophagy. Moreover, a significant reduction in oxidative capacity was observed in both M-AKTDKO (P < 0.05, P < 0.01 and P < 0.001; n = 5-12) and M-indAKTDKO (P < 0.05 and P < 0.01; n = 4). Mechanistically, activation and inhibition of mTORC1/FOXO1, respectively, but neither alone, were sufficient to restore protein synthesis, muscle oxidative capacity, and muscle function in the absence of AKT in vivo. In a mouse model of disuse-induced muscle loss, simultaneous activation of mTORC1 and inhibition of FOXO1 preserved muscle mass following immobilization (~5-10% reduction in casted M-indFOXO1TSCDKO muscles vs. ~30-40% casted M-indControl muscles, P < 0.05 and P < 0.0001; n = 8-16). CONCLUSIONS: Collectively, this study provides novel insights into the AKT-dependent mechanisms that underlie muscle protein homeostasis, function, and metabolism in both normal physiology and disuse-induced muscle wasting.


Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/pharmacology , Mechanistic Target of Rapamycin Complex 1 , Mice , Muscle, Skeletal/pathology , Oxidative Stress , Proto-Oncogene Proteins c-akt/metabolism
16.
Mol Metab ; 51: 101246, 2021 09.
Article En | MEDLINE | ID: mdl-33964506

OBJECTIVE: Stress-induced hyperglycemia is associated with poor outcomes in nearly all critical illnesses. This acute elevation in glucose after injury or illness is associated with increased morbidity and mortality, including multiple organ failure. Stress-induced hyperglycemia is often attributed to insulin resistance as controlling glucose levels via exogenous insulin improves outcomes, but the mechanisms are unclear. Forkhead box O (FOXO) transcription factors are direct targets of insulin signaling in the liver that regulate glucose homeostasis via direct and indirect pathways. Loss of hepatic FOXO transcription factors reduces hyperglycemia in chronic insulin resistance; however, the role of FOXOs in stress-induced hyperglycemia is unknown. METHODS: We subjected mice lacking FOXO transcription factors in the liver to a model of injury known to cause stress-induced hyperglycemia. Glucose, insulin, glycerol, fatty acids, cytokines, and adipokines were assessed before and after injury. Liver and adipose tissue were analyzed for changes in glycogen, FOXO target gene expression, and insulin signaling. RESULTS: Stress-induced hyperglycemia was associated with reduced hepatic insulin signaling and increased hepatic FOXO target gene expression while loss of FOXO1, 3, and 4 in the liver attenuated hyperglycemia and prevented hyperinsulinemia. Mechanistically, the loss of FOXO transcription factors mitigated the stress-induced hyperglycemia response by directly altering gene expression and glycogenolysis in the liver and indirectly suppressing lipolysis in adipose tissue. Reductions were associated with decreased IL-6, TNF-α, and follistatin and increased FGF21, suggesting that cytokines and FOXO-regulated hepatokines contribute to the stress-induced hyperglycemia response. CONCLUSIONS: This study implicates FOXO transcription factors as a predominant driver of stress-induced hyperglycemia through means that include cross-talk between the liver and adipose, highlighting a novel mechanism underlying acute hyperglycemia and insulin resistance in stress.


Forkhead Transcription Factors/deficiency , Hyperglycemia/genetics , Insulin Resistance/genetics , Stress, Physiological/genetics , Adipose Tissue/metabolism , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Forkhead Transcription Factors/genetics , Gene Expression Regulation , Humans , Hyperglycemia/blood , Hyperglycemia/metabolism , Liver/metabolism , Male , Mice , Mice, Knockout , Signal Transduction/genetics
17.
Cell Rep ; 35(7): 109128, 2021 05 18.
Article En | MEDLINE | ID: mdl-34010646

Organismal stressors such as cold exposure require a systemic response to maintain body temperature. Brown adipose tissue (BAT) is a key thermogenic tissue in mammals that protects against hypothermia in response to cold exposure. Defining the complex interplay of multiple organ systems in this response is fundamental to our understanding of adipose tissue thermogenesis. In this study, we identify a role for hepatic insulin signaling via AKT in the adaptive response to cold stress and show that liver AKT is an essential cell-nonautonomous regulator of adipocyte lipolysis and BAT function. Mechanistically, inhibition of forkhead box O1 (FOXO1) by AKT controls BAT thermogenesis by enhancing catecholamine-induced lipolysis in the white adipose tissue (WAT) and increasing circulating fibroblast growth factor 21 (FGF21). Our data identify a role for hepatic insulin signaling via the AKT-FOXO1 axis in regulating WAT lipolysis, promoting BAT thermogenic capacity, and ensuring a proper thermogenic response to acute cold exposure.


Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Fibroblast Growth Factors/metabolism , Liver/pathology , Proto-Oncogene Proteins c-akt/metabolism , Thermogenesis/genetics , Animals , Mice
18.
Nature ; 579(7800): 586-591, 2020 03.
Article En | MEDLINE | ID: mdl-32214246

Consumption of fructose has risen markedly in recent decades owing to the use of sucrose and high-fructose corn syrup in beverages and processed foods1, and this has contributed to increasing rates of obesity and non-alcoholic fatty liver disease2-4. Fructose intake triggers de novo lipogenesis in the liver4-6, in which carbon precursors of acetyl-CoA are converted into fatty acids. The ATP citrate lyase (ACLY) enzyme cleaves cytosolic citrate to generate acetyl-CoA, and is upregulated after consumption of carbohydrates7. Clinical trials are currently pursuing the inhibition of ACLY as a treatment for metabolic diseases8. However, the route from dietary fructose to hepatic acetyl-CoA and lipids remains unknown. Here, using in vivo isotope tracing, we show that liver-specific deletion of Acly in mice is unable to suppress fructose-induced lipogenesis. Dietary fructose is converted to acetate by the gut microbiota9, and this supplies lipogenic acetyl-CoA independently of ACLY10. Depletion of the microbiota or silencing of hepatic ACSS2, which generates acetyl-CoA from acetate, potently suppresses the conversion of bolus fructose into hepatic acetyl-CoA and fatty acids. When fructose is consumed more gradually to facilitate its absorption in the small intestine, both citrate cleavage in hepatocytes and microorganism-derived acetate contribute to lipogenesis. By contrast, the lipogenic transcriptional program is activated in response to fructose in a manner that is independent of acetyl-CoA metabolism. These data reveal a two-pronged mechanism that regulates hepatic lipogenesis, in which fructolysis within hepatocytes provides a signal to promote the expression of lipogenic genes, and the generation of microbial acetate feeds lipogenic pools of acetyl-CoA.


Acetates/metabolism , Dietary Sugars/metabolism , Fructose/metabolism , Gastrointestinal Microbiome/physiology , Lipogenesis , Liver/metabolism , ATP Citrate (pro-S)-Lyase/deficiency , ATP Citrate (pro-S)-Lyase/genetics , ATP Citrate (pro-S)-Lyase/metabolism , Acetate-CoA Ligase/deficiency , Acetate-CoA Ligase/genetics , Acetate-CoA Ligase/metabolism , Acetyl Coenzyme A/metabolism , Animals , Citric Acid/metabolism , Dietary Sugars/administration & dosage , Dietary Sugars/pharmacology , Fatty Acids/metabolism , Fructose/administration & dosage , Fructose/pharmacology , Gastrointestinal Microbiome/drug effects , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hepatocytes/drug effects , Hepatocytes/enzymology , Hepatocytes/metabolism , Isotope Labeling , Lipogenesis/drug effects , Lipogenesis/genetics , Liver/cytology , Liver/drug effects , Liver/enzymology , Male , Mice , Substrate Specificity
19.
Cell Rep ; 30(9): 2869-2878.e4, 2020 03 03.
Article En | MEDLINE | ID: mdl-32130892

Brown adipose tissue (BAT) activity protects animals against hypothermia and represents a potential therapeutic target to combat obesity. The transcription factor early B cell factor-2 (EBF2) promotes brown adipocyte differentiation, but its roles in maintaining brown adipocyte fate and in stimulating BAT recruitment during cold exposure were unknown. We find that the deletion of Ebf2 in adipocytes of mice ablates BAT character and function, resulting in cold intolerance. Unexpectedly, prolonged exposure to cold restores the thermogenic profile and function of Ebf2 mutant BAT. Enhancer profiling and genetic assays identified EBF1 as a candidate regulator of the cold response in BAT. Adipocyte-specific deletion of both Ebf1 and Ebf2 abolishes BAT recruitment during chronic cold exposure. Mechanistically, EBF1 and EBF2 promote thermogenic gene transcription through increasing the expression and activity of ERRα and PGC1α. Together, these studies demonstrate that EBF proteins specify the developmental fate and control the adaptive cold response of brown adipocytes.


Adipocytes, Brown/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Thermogenesis/genetics , Adipose Tissue, Brown/metabolism , Animals , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , Cold Temperature , Diet, High-Fat , Gene Expression Regulation , Mice , NIH 3T3 Cells , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Receptors, Estrogen , Transcription, Genetic , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , ERRalpha Estrogen-Related Receptor
20.
Cell Rep ; 30(9): 3079-3091.e5, 2020 03 03.
Article En | MEDLINE | ID: mdl-32130908

Brown adipose tissue (BAT) generates heat to maintain body temperature and suppress obesity. Agonists for nuclear receptors PPARα and PPARγ both affect brown adipocyte function, yet the interplay between these factors in BAT is uncertain. Here, we report that PPARα shares most genomic binding sites with PPARγ, and these common binding sites are more related to BAT function than PPARγ-selective sites without PPARα. Integrating PPARα and PPARγ genomic occupancy with cold-responsive BAT transcriptomes identifies a subset of 16 genes with potential relevance to BAT function. Among these, we focused on the lysosomal protease cathepsin Z (CTSZ) and showed it is necessary for mitochondrial respiration in both mouse and human brown adipocytes. Thus, CTSZ is a shared PPARα/γ target gene in BAT and a regulator of brown adipocyte thermogenic function.


Adipocytes, Brown/metabolism , PPAR alpha/metabolism , PPAR gamma/metabolism , Thermogenesis/genetics , Adipose Tissue, Brown/metabolism , Animals , Base Sequence , Binding Sites , Cathepsin Z/genetics , Cathepsin Z/metabolism , Cold Temperature , Genome , Humans , Male , Mice, Inbred C57BL , PPAR alpha/agonists , PPAR gamma/agonists , Protein Binding
...