Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Publication year range
1.
Eur J Appl Physiol ; 122(8): 1915-1928, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35612684

ABSTRACT

PURPOSE: Caffeine improves cycling time trial (TT) performance; however, it is unknown whether caffeine is ergogenic when competing against other riders. The aim of this study was to investigate whether caffeine improves performance during a 4-km cycling TT when riding against a virtual opponent, and whether it is associated with increased muscle activation and at the expense of greater end-exercise central and peripheral fatigue. METHODS: Using a randomized, crossover, and double-blind design, eleven well-trained cyclists completed a 4-km cycling TT alone without supplementation (CON), or against a virtual opponent after ingestion of placebo (OP-PLA) or caffeine (5 mg.kg-1, OP-CAF). Central and peripheral fatigue were quantified via the pre- to post-exercise decrease in voluntary activation and potentiated twitch force, respectively. Muscle activation was continually measured during the trial via electromyography activity. RESULTS: Compared to CON, OP-PLA improved 4-km cycling TT performance (P = 0.018), and OP-CAF further improved performance when compared to OP-PLA (P = 0.050). Muscle activation was higher in OP-PLA and OP-CAF than in CON throughout the trial (P = 0.003). The pre- to post-exercise reductions in voluntary activation and potentiated twitch force were, however, similar between experimental conditions (P > 0.05). Compared to CON, OP-PLA increased the rating of perceived exertion during the first 2 km, but caffeine blunted this increase with no difference between the OP-CAF and CON conditions. CONCLUSIONS: Caffeine is ergogenic when riding against a virtual opponent, but this is not due to greater muscle activation or at the expense of greater end-exercise central or peripheral fatigue.


Subject(s)
Athletic Performance , Performance-Enhancing Substances , Athletic Performance/physiology , Bicycling/physiology , Caffeine/pharmacology , Cross-Over Studies , Double-Blind Method , Eating , Humans , Male , Muscle Fatigue , Performance-Enhancing Substances/pharmacology , Polyesters
2.
J Am Nutr Assoc ; 41(4): 399-406, 2022.
Article in English | MEDLINE | ID: mdl-33783319

ABSTRACT

OBJECTIVE: The impact of a vegan diet on sprint interval exercise performance is unknown. Thus, the purpose of the present study was to compare performance during a sprint interval exercise between omnivores and vegans. METHODS: Nine healthy omnivores (4 men and 5 women) and nine healthy vegans (4 men and 5 women), with similar levels of daily physical activity, performed four bouts (5-min rest between bouts) of a 30-s all-out sprint exercise on a cycle ergometer. Peak power, mean power, fatigue index, and time to reach maximal power output in each bout were recorded. RESULTS: There was a higher peak power in bouts 1 and 2 compared with bouts 3 and 4 (p < 0.02), and a higher mean power in bout 1 compared with bouts 2, 3 and 4 (p < 0.02). However, for all bouts, there were no significant difference between omnivores and vegans in peak power (7.60 ± 1.55 vs. 8.16 ± 1.27, 7.52 ± 1.6 vs 7.61 ± 0.73, 7.00 ± 1.44 vs. 7.00 ± 1.05 and 6.95 ± 1.42 vs. 6.49 ± 0.90 W.kg-1, all p > 0.05) and in mean power (5.35 ± 0.93 vs. 5.69 ± 0.84, 5.10 ± 0.88 vs. 5.21 ± 0.49, 4.79 ± 0.81 vs. 4.79 ± 0.45 and 4.81 ± 0.81 vs. 4.69 ± 0.47 W.kg-1, all p > 0.05). Fatigue index and time to reach maximal power output were not affected by diet or bouts (all p > 0.05). CONCLUSIONS: These findings indicate that a vegan diet does not compromise sprint interval exercise performance.


Subject(s)
Diet, Vegan , Vegans , Ergometry , Exercise , Fatigue , Female , Humans , Male
3.
FASEB J ; 34(1): 1602-1619, 2020 01.
Article in English | MEDLINE | ID: mdl-31914620

ABSTRACT

Endurance exercise begun with reduced muscle glycogen stores seems to potentiate skeletal muscle protein abundance and gene expression. However, it is unknown whether this greater signaling responses is due to performing two exercise sessions in close proximity-as a first exercise session is necessary to reduce the muscle glycogen stores. In the present study, we manipulated the recovery duration between a first muscle glycogen-depleting exercise and a second exercise session, such that the second exercise session started with reduced muscle glycogen in both approaches but was performed either 2 or 15 hours after the first exercise session (so-called "twice-a-day" and "once-daily" approaches, respectively). We found that exercise twice-a-day increased the nuclear abundance of transcription factor EB (TFEB) and nuclear factor of activated T cells (NFAT) and potentiated the transcription of peroxisome proliferator-activated receptor-É£ coactivator 1-alpha (PGC-1α), peroxisome proliferator-activated receptor-alpha (PPARα), and peroxisome proliferator-activated receptor beta/delta (PPARß/δ) genes, in comparison with the once-daily exercise. These results suggest that part of the elevated molecular signaling reported with previous "train-low" approaches might be attributed to performing two exercise sessions in close proximity. The twice-a-day approach might be an effective strategy to induce adaptations related to mitochondrial biogenesis and fat oxidation.


Subject(s)
Biomarkers/metabolism , Exercise/physiology , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/physiology , AMP-Activated Protein Kinases/metabolism , Adaptation, Physiological/physiology , Adult , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Nucleus/metabolism , Cell Nucleus/physiology , Cross-Over Studies , Glycogen/metabolism , Humans , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , NFATC Transcription Factors/metabolism , Organelle Biogenesis , PPAR alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction/physiology , Transcription Factors/metabolism
4.
PLoS One ; 14(11): e0224794, 2019.
Article in English | MEDLINE | ID: mdl-31697729

ABSTRACT

This study investigated the effect of caffeine on neuromuscular function, power and sprint performance during the days following an eccentric-based exercise. Using a randomly counterbalanced, crossover and double-blinded design, eleven male jumpers and sprinters (age: 18.7 ± 2.7 years) performed a half-squat exercise (4 x 12 repetitions at 70% of 1 RM), with eccentric action emphasized by using a flexible strip attached to their knees (Tirante Musculador®). They ingested either a capsule of placebo or caffeine (5 mg.kg-1 body mass) 24, 48 and 72 h after. Neuromuscular function and muscle power (vertical countermovement-jump test) were assessed before and after the half-squat exercise and 50 min after the placebo or caffeine ingestion at each time-point post-exercise. Sprint performance was measured at pre-test and 75 min after the placebo or caffeine ingestion at each time-point post-exercise. Maximal voluntary contraction (overall fatigue) and twitch torque (peripheral fatigue) reduced after the half-squat exercise (-11 and -28%, respectively, P < 0.05) but returned to baseline 24 h post-exercise (P > 0.05) and were not affected by caffeine ingestion (P > 0.05). The voluntary activation (central fatigue) and sprint performance were not altered throughout the experiment and were not different between caffeine and placebo. However, caffeine increased height and power during the vertical countermovement-jump test at 48 and 72 h post half-squat exercise, when compared to the placebo (P < 0.05). In conclusion, caffeine improves muscle power 48 and 72 h after an eccentric-based exercise, but it has no effect on neuromuscular function and sprint performance.


Subject(s)
Exercise , Muscles/physiology , Nervous System/drug effects , Adolescent , Caffeine/pharmacology , Creatine Kinase/metabolism , Humans , Male , Motor Activity/drug effects , Muscles/drug effects , Posture
5.
J Appl Physiol (1985) ; 127(3): 713-725, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31246557

ABSTRACT

Exercise training performed with lowered muscle glycogen stores can amplify adaptations related to oxidative metabolism, but it is not known if this is affected by the "train-low" strategy used (i.e., once-daily versus twice-a-day training). Fifteen healthy men performed 3 wk of an endurance exercise (100-min) followed by a high-intensity interval exercise 2 (twice-a-day group, n = 8) or 14 h (once-daily group, n = 7) later; therefore, the second training session always started with low muscle glycogen in both groups. Mitochondrial efficiency (state 4 respiration) was improved only for the twice-a-day group (group × training interaction, P < 0.05). However, muscle citrate synthase activity, mitochondria, and lipid area in intermyofibrillar and subsarcolemmal regions, and PGC1α, PPARα, and electron transport chain relative protein abundance were not altered with training in either group (P > 0.05). Markers of aerobic fitness (e.g., peak oxygen uptake) were increased, and plasma lactate, O2 cost, and rating of perceived exertion during a 100-min exercise task were reduced in both groups, although the reduction in rating of perceived exertion was larger in the twice-a-day group (group × time × training interaction, P < 0.05). These findings suggest similar training adaptations with both training low approaches; however, improvements in mitochondrial efficiency and perceived effort seem to be more pronounced with twice-a-day training.NEW & NOTEWORTHY We assessed, for the first time, the differences between two "train-low" strategies (once-daily and twice-a-day) in terms of training-induced molecular, functional, and morphological adaptations. We found that both strategies had similar molecular and morphological adaptations; however, only the twice-a-day strategy increased mitochondrial efficiency and had a superior reduction in the rating of perceived exertion during a constant-load exercise compared with once-daily training. Our findings provide novel insights into skeletal muscle adaptations using the "train-low" strategy.


Subject(s)
Adaptation, Physiological , Endurance Training , High-Intensity Interval Training , Mitochondria, Muscle/enzymology , Organelle Biogenesis , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Adult , Cell Respiration , Citrate (si)-Synthase/metabolism , Electron Transport Chain Complex Proteins/metabolism , Healthy Volunteers , Humans , Male , Mitochondria, Muscle/ultrastructure , Young Adult
6.
PLoS One ; 12(6): e0179457, 2017.
Article in English | MEDLINE | ID: mdl-28617848

ABSTRACT

We investigated whether caffeine ingestion before submaximal exercise bouts would affect supramaximal oxygen demand and maximal accumulated oxygen deficit (MAOD), and if caffeine-induced improvement on the anaerobic capacity (AC) could be detected by different methods. Nine men took part in several submaximal and supramaximal exercise bouts one hour after ingesting caffeine (5 mg·kg-1) or placebo. The AC was estimated by MAOD, alternative MAOD, critical power, and gross efficiency methods. Caffeine had no effect on exercise endurance during the supramaximal bout (caffeine: 131.3 ± 21.9 and placebo: 130.8 ± 20.8 s, P = 0.80). Caffeine ingestion before submaximal trials did not affect supramaximal oxygen demand and MAOD compared to placebo (7.88 ± 1.56 L and 65.80 ± 16.06 kJ vs. 7.89 ± 1.30 L and 62.85 ± 13.67 kJ, P = 0.99). Additionally, MAOD was similar between caffeine and placebo when supramaximal oxygen demand was estimated without caffeine effects during submaximal bouts (67.02 ± 16.36 and 62.85 ± 13.67 kJ, P = 0.41) or when estimated by alternative MAOD (56.61 ± 8.49 and 56.87 ± 9.76 kJ, P = 0.91). The AC estimated by gross efficiency was also similar between caffeine and placebo (21.80 ± 3.09 and 20.94 ± 2.67 kJ, P = 0.15), but was lower in caffeine when estimated by critical power method (16.2 ± 2.6 vs. 19.3 ± 3.5 kJ, P = 0.03). In conclusion, caffeine ingestion before submaximal bouts did not affect supramaximal oxygen demand and consequently MAOD. Otherwise, caffeine seems to have no clear positive effect on AC.


Subject(s)
Anaerobic Threshold/drug effects , Caffeine/administration & dosage , Exercise , Oxygen/blood , Adult , Humans , Male
7.
Rev. educ. fis ; 26(3): 443-449, jul.-set. 2015. tab, graf
Article in Portuguese | LILACS | ID: lil-767210

ABSTRACT

RESUMO A escolha do pacing é determinante para o sucesso esportivo, mas a análise de pequenas alterações no pacing necessita de mais estudos. O objetivo deste estudo foi determinar parâmetros na curva de desempenho em contrarrelógio de ciclismo para investigar variações dopacing e sua reprodutibilidade. A análise por trechos da prova também foi realizada. 19 ciclistas amadores realizaram dois testes de 4-km, no qual foram analisados parâmetros nas curvas de desempenho individuais e a potência média dos trechos da prova. O tempo e a potência média foram similares entre os testes. Não houve diferença entre os parâmetros observados na curva de desempenho comparando o teste 1 e 2, mas estes mostraram alto valor de erro típico da medida. A análise por trechos da prova foi mais consistente, sendo uma opção para analisar o pacing. Apesar de um desempenho consistente no contrarrelógio de 4-km, os parâmetros determinados apresentaram grande variação intraindividual.


ABSTRACT The selection of pacing is determinant for the sport success, but the analysis of modest variations in pacing requires further studies. The purpose of this study was to determine parameters in the performance curve on cycling time trial to investigate pacing variations and reproducibility. The test sections analysis was also performed. 19 amateur cyclists performed two tests of 4-km, in which parameters were analyzed in the individual performance curves and the average power of the test sections. The time and the average power were similar between tests. There was no difference between the parameters observed in the performance curve comparing the test 1 and 2, but these showed a high value of typical error. The test portions analysis was more consistent, with an alternative to analyze pacing. Despite consistent performance in time trial 4-km, the parameters determined varied widely between individuals.

8.
Physiol Behav ; 149: 39-44, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26013576

ABSTRACT

The objective of this study was to analyze the influence of the presence and absence of competitors on pacing, overall running performance, and mood state during a self-paced 3-km run. Nine recreational runners participated in this study. They performed the following tests: a) an incremental test to exhaustion to measure the respiratory compensation point (RCP), maximal oxygen uptake, and peak treadmill speed; b) a submaximal speed constant test to measure running economy; and c) two 3-km running time trials performed collectively (COL, head-to-head competition) or individually (IND, performed alone) to establish pacing and running performance. The COL condition was formed of a group of four runners or five runners. Runners were grouped by matched performance times and to retain head-to-head characteristics.A mood state profile questionnaire was completed before and after the 3-km running time trial. The overall performance was better in the COL than in the IND (11.75 ± 0.05 min vs. 12.25 ± 0.06 min, respectively; p = 0.04). The running speeds during the first 500 m were significantly greater in COL (16.8 ± 2.16 km·h−1) than in IND (15.3 ± 2.45 km·h−1) (p = 0.03).The gain in running speed from IND to COL during the first 400 m (i.e. running speed in COL less running speed in IND) was significantly correlated with the RCP (r = 0.88; p = 0.05). The vigor score significantly decreased from pre- to post-running in COL (p=0.05), but not in IND (p=0.20). Additionally, the post running vigor was significantly higher in IND compared to COL (p = 0.03).These findings suggested that the presence of competitors induces a fast start, which results in an improved overall performance and reduced post-exercise vigor scores, compared to an individual run.


Subject(s)
Affect/physiology , Competitive Behavior/physiology , Running/physiology , Running/psychology , Adult , Exercise Test , Humans , Male , Oxygen Consumption/physiology , Physical Exertion/physiology , Statistics, Nonparametric , Surveys and Questionnaires , Time Factors , User-Computer Interface , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL