Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Prod Res ; 38(10): 1662-1669, 2024 May.
Article in English | MEDLINE | ID: mdl-37211779

ABSTRACT

Microbial lipids are a valuable source of potential biofuels and essential polyunsaturated fatty acids. The optimization of the fermentation conditions is a strategy that affects the total lipid concentration. The genus Nigrospora sp. has been the target of investigations based on its potential bioherbicidal action. Therefore, this study developed a strategy to maximize the biomass concentration and lipid accumulation by Nigrospora sp. in submerged fermentation. Different media compositions and process variables were investigated in shaken flasks and bioreactor in batch and fed-batch modes. Maximum biomass concentration and lipid accumulations were 40.17 g/L and 21.32 wt% in the bioreactor, which was 2.1 and 5.4 times higher than the same condition in shaken flasks, respectively. This study presents relevant information to the production of fungal lipids since few investigations are exploring the fed-batch strategy to increase the yield of fungi lipids, as well as few studies investigating Nigrospora sp. to produce lipids.


Subject(s)
Ascomycota , Bioreactors , Fermentation , Lipids , Biomass , Biofuels
2.
Environ Technol ; 42(9): 1392-1401, 2021 Apr.
Article in English | MEDLINE | ID: mdl-31526308

ABSTRACT

The natural ability of microorganisms to secrete high levels of bioactive compounds make them attractive hosts for producing novel compounds. Microbial biopolymers have potential applications in most of the sectors of the world economy. According to the physicochemical properties, they present some advantages, such as biodegradability, reproducibility, and stability. Based on this context, the objective of this work was to evaluate different methods for concentration and characterisation of extracellular biopolymers produced by Phoma sp. Extracellular biopolymers were produced by submerged fermentation and were concentrated by hollow fibre membranes and by adsorption. The structural characterisation of purified biopolymers was determined by Fourier Transform Infrared spectroscopy. Phytotoxic effects were assessed through absorption assays in detached leaves of Cucumis sativus and evaluated on the seventh day after application. The surface tension was evaluated for each sample. Hollow-fibre microfiltration membrane presented a higher purification factor than hollow-fibre ultrafiltration membrane. Extracellular biopolymers were identified in the permeate and retentate fractions, but in higher concentration in the retentate fractions. The adsorption process was efficient for recovering more than 88% of extracellular biopolymers from cell-free fermented broth. The best performance was obtained by using silica and activated carbon as adsorbent, with a recovery higher than 93%. The herbicidal activity was proportional to the concentration of biopolymers and the results are very promising for future applications because a concentrated solution of biopolymers can increase weed control. Membrane processes can be used to develop a liquid formulation of bioherbicide, whereas adsorption can be used to develop a solid formula.


Subject(s)
Herbicides , Adsorption , Biopolymers , Membranes, Artificial , Phoma , Reproducibility of Results , Ultrafiltration
3.
Environ Sci Pollut Res Int ; 27(10): 10484-10494, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31940142

ABSTRACT

Sugarcane bagasse, a largely available waste worldwide, was submitted to solid-state fermentation (SSF) using the fungus Metarhizium anisopliae, aiming to produce enzymes. The solid waste generated from SSF was tested as an alternative biosorbent to treat colored effluents containing crystal violet (CV) dye. The biosorbent, here named BW (bagasse waste), was characterized, and experimental tests were performed to verify the influence of pH and dosage on the CV biosorption. Isotherms and biosorption kinetics were performed, and the biosorption thermodynamic parameters were determined. The potential of BW was also evaluated for the treatment of a simulated textile effluent. The maximum biosorption capacity was 131.2 mg g-1 at 328 K, and the Liu was the most appropriate model to represent equilibrium data. The biosorption was spontaneous and endothermic. The use of BW in the simulated effluent showed that it is an efficient material, reaching color removal values of 85%. Therefore, the sugarcane bagasse generated from SSF can be considered a potential biosorbent to remove CV from textile effluents. This finding is relevant from the total environment viewpoint, since, at the same time, SSF generates enzymes and a solid waste, which in turn can be used as biosorbent to treat colored effluents.


Subject(s)
Gentian Violet , Water Pollutants, Chemical/analysis , Adsorption , Biomass , Coloring Agents , Hydrogen-Ion Concentration , Kinetics , Solid Waste , Thermodynamics
4.
Environ Sci Pollut Res Int ; 26(36): 36967-36977, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31745801

ABSTRACT

The adsorption of acid red 97 dye (RED 97) by the waste of the filamentous fungus Beauveria bassiana was analyzed. The adsorbent was obtained as a waste of a fermentative process, and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffractometry (XRD), and specific surface area (BET). After the characterization, adsorption tests were carried out to determine the ideal conditions of pH, adsorbent mass, and contact time for the process. Adsorption isotherms, thermodynamic studies, and the treatment of textile effluent were also investigated. The adsorbent characterization allowed the visualization of its amorphous structure, with irregular and heterogeneous particles. The pore diameter was 51.9 nm and the surface area was 0.247 m2 g-1. 1.2 g L-1 of the adsorbent and pH of 2.0 were the ideal conditions for RED 97 adsorption. The pseudo-second-order kinetic model was the most appropriate to represent the experimental data, being the equilibrium reached in about 110 min. The Langmuir model was the most suitable to represent the equilibrium data, with maximum adsorption capacity of 194.1 mg g-1 at 45 °C. The adsorption processes was thermodynamically spontaneous, favorable, and exothermic. In the treatment of a real textile effluent, 5 g L-1 of the spores was capable to decolorize 70% of the solution. Therefore, spore wastes of Beauveria bassiana were promising for RED 97 adsorption.


Subject(s)
Azo Compounds/chemistry , Beauveria , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Spores, Fungal , Textiles , Thermodynamics , Water Pollutants, Chemical/analysis
5.
Chemosphere ; 235: 596-605, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31276872

ABSTRACT

The potentiality of Phoma sp. inactive fungal biomass, waste from the bioherbicide production, was evaluated for the treatment of colored effluents containing Acid Red 18 (AR 18) dye. The batch experiments were performed to evaluate the following parameters: pH of the solution (2-10), dye concentration (50-200 mg L-1), adsorbent dose (0.5-2.5 g L-1), contact time (0-180 min) and temperature (298-328 K). The batch experiments using a synthetic dye solution revealed that Phoma sp. was efficient at pH of 2.0, 298 K and using a dosage of 1.25 g L-1. The process was fast, being the equilibrium reached within 180 min. The maximum value of biosorption capacity was 63.58 mg g-1, being the process favorable and exothermic. From the fixed bed assays, breakthrough curves were obtained, presenting a mass transfer zone of 7.08 cm and breakthrough time of 443 min. Phoma sp. was efficient to decolorize a simulated effluent, removing more than 90% of the color. From the obtained results, it can be concluded that Phoma sp. inactive biomass is a low-cost option to treat colored effluents in continuous and discontinuous biosorption modes. These indicate that Phoma sp. of inactive biomass is an option for the treatment of colored effluents.


Subject(s)
Waste Disposal, Fluid/methods , Adsorption , Azo Compounds , Biomass , Fungi , Herbicides , Hydrogen-Ion Concentration , Kinetics , Mitosporic Fungi , Naphthalenesulfonates , Temperature
6.
Environ Sci Pollut Res Int ; 26(19): 19207-19219, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31069651

ABSTRACT

Cedar bark (Cedrella fissilis), a waste from wood processing, was evaluated as an adsorbent for the removal of red 97 dye from effluents. The material exhibited an amorphous structure, irregular surface, and was mainly composed of lignin and holocellulose. The adsorption was favored at pH 2.0. The general order model was most suitable for describing the experimental kinetic data, being the equilibrium reached in around 30 min. The isotherm experiments were better described by the Langmuir model. The maximum adsorption capacity was 422.87 mg g-1 at 328 K. The values of standard Gibbs free energy change (ΔG0) were from - 21 to - 26 kJ mol-1, indicating a spontaneous and favorable process. The enthalpy change (ΔH0) was 18.98 kJ mol-1, indicating an endothermic process. From the fixed bed adsorption experiment, an inclined breakthrough curve was found, with a mass transfer zone of 5.36 cm and a breakthrough time of 329 min. Cedar bark was able to treat a simulated effluent attaining color removal of 86.6%. These findings indicated that cedar bark has the potential to be applied as a low-cost adsorbent for the treatment of colored effluents in batch and continuous adsorption systems.


Subject(s)
Azo Compounds/analysis , Plant Bark/chemistry , Waste Products/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Hydrogen-Ion Concentration , Kinetics , Thermodynamics
7.
Water Sci Technol ; 79(4): 709-717, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30975937

ABSTRACT

An inactive biomass of a new fungus recently discovered, Diaporthe schini, was evaluated for the biosorption of crystal violet (CV) in simulated textile effluents. The characterization assays were performed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and N2 adsorption/desorption isotherms. The influences of pH and biosorbent dosage on the biosorption capacity were evaluated. Kinetics, equilibrium and thermodynamic studies were also carried out. Characterization techniques showed an amorphous biosorbent, with a rough surface containing irregular particles and surface area of 6.5 m2 g-1. The most adequate values of pH and biosorbent dosage were 7.5 and 0.4 g L-1, respectively. The Elovich kinetic model and the Sips equilibrium model were suitable to fit the experimental data. The biosorption capacity increased with temperature, reaching a maximum biosorption capacity of 642.3 mg g-1 at 328 K. The biosorption was a spontaneous and endothermic process. Diaporthe schini inactive biomass was an interesting biosorbent to treat colored effluents, presenting efficiency of 87% in the decolorization of a simulated dye house effluent.


Subject(s)
Fungi/metabolism , Gentian Violet/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Biodegradation, Environmental , Biomass , Coloring Agents/analysis , Coloring Agents/metabolism , Gentian Violet/analysis , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL