Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 121
1.
Front Immunol ; 15: 1402724, 2024.
Article En | MEDLINE | ID: mdl-38835783

Background and objective: Acute ischemic stroke (AIS) is a leading cause of mortality, severe neurological and long-term disability world-wide. Blood-based indicators may provide valuable information on identified prognostic factors. However, currently, there is still a lack of peripheral blood indicators for the prognosis of AIS. We aimed to identify the most promising prognostic indicators and establish prognostic models for AIS. Methods: 484 subjects enrolled from four centers were analyzed immunophenotypic indicators of peripheral blood by flow cytometry. Least absolute shrinkage and selection operator (LASSO) regression was applied to minimize the potential collinearity and over-fitting of variables measured from the same subject and over-fitting of variables. Univariate and multivariable Cox survival analysis of differences between and within cohorts was performed by log-rank test. The areas under the receiving operating characteristic (ROC) curves were used to evaluate the selection accuracy of immunophenotypic indicators in identifying AIS subjects with survival risk. The prognostic model was constructed using a multivariate Cox model, consisting of 402 subjects as a training cohort and 82 subjects as a testing cohort. Results: In the prospective study, 7 immunophenotypic indicators of distinct significance were screened out of 72 peripheral blood immunophenotypic indicators by LASSO. In multivariate cox regression, CTL (%) [HR: 1.18, 95% CI: 1.03-1.33], monocytes/µl [HR: 1.13, 95% CI: 1.05-1.21], non-classical monocytes/µl [HR: 1.09, 95% CI: 1.02-1.16] and CD56high NK cells/µl [HR: 1.13, 95% CI: 1.05-1.21] were detected to decrease the survival probability of AIS, while Tregs/µl [HR:0.97, 95% CI: 0.95-0.99, p=0.004], BM/µl [HR:0.90, 95% CI: 0.85-0.95, p=0.023] and CD16+NK cells/µl [HR:0.93, 95% CI: 0.88-0.98, p=0.034] may have the protective effect. As for indicators' discriminative ability, the AUC for CD56highNK cells/µl attained the highest of 0.912. In stratification analysis, the survival probability for AIS subjects with a higher level of Tregs/µl, BM/µl, CD16+NK cells/µl, or lower levels of CD56highNK cells/µl, CTL (%), non-classical monocytes/µl, Monocytes/µl were more likely to survive after AIS. The multivariate Cox model showed an area under the curve (AUC) of 0.805, 0.781 and 0.819 and 0.961, 0.924 and 0.982 in the training and testing cohort, respectively. Conclusion: Our study identified 7 immunophenotypic indicators in peripheral blood may have great clinical significance in monitoring the prognosis of AIS and provide a convenient and valuable predictive model for AIS.


Flow Cytometry , Immunophenotyping , Ischemic Stroke , Humans , Female , Male , Ischemic Stroke/blood , Ischemic Stroke/mortality , Ischemic Stroke/diagnosis , Ischemic Stroke/immunology , Flow Cytometry/methods , Prognosis , Aged , Middle Aged , Prospective Studies , Biomarkers/blood , Aged, 80 and over
2.
Biomed Pharmacother ; 175: 116727, 2024 Jun.
Article En | MEDLINE | ID: mdl-38733771

Myelodysplastic syndromes (MDS) encompass a collection of clonal hematopoietic malignancies distinguished by the depletion of peripheral blood cells. The treatment of MDS is hindered by the advanced age of patients, with a restricted repertoire of drugs currently accessible for therapeutic intervention. In this study, we found that ES-Cu strongly inhibited the viability of MDS cell lines and activated cuproptosis in a copper-dependent manner. Importantly, ferroptosis inducer IKE synergistically enhanced ES-Cu-mediated cytotoxicity both in vitro and in vivo. Of note, the combination of IKE and ES-Cu intensively impaired mitochondrial homeostasis with increased mitochondrial ROS, MMP hyperpolarized, down-regulated iron-sulfur proteins and declined oxygen consumption rate. Additionally, ES-Cu/IKE treatment could enhance the lipoylation-dependent oligomerization of the DLAT. To elucidate the specific order of events in the synergistic cell death, inhibitors of ferroptosis and cuproptosis were utilized to further characterize the basis of cell death. Cell viability assays showed that the glutathione and its precursor N-acetylcysteine could significantly rescue the cell death under either mono or combination treatment, demonstrating that GSH acts at the crossing point in the regulation network of cuproptosis and ferroptosis. Significantly, the reconstitution of xCT expression and knockdown of FDX1 cells have been found to contribute to the tolerance of mono treatment but have little recovery impact on the combined treatment. Collectively, these findings suggest that a synergistic interaction leading to the induction of multiple programmed cell death pathways could be a promising approach to enhance the effectiveness of therapy for MDS.


Copper , Drug Synergism , Ferroptosis , Myelodysplastic Syndromes , Ferroptosis/drug effects , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/metabolism , Humans , Animals , Copper/chemistry , Copper/metabolism , Piperazines/pharmacology , Mice , Cell Survival/drug effects , Imidazoles/pharmacology , Reactive Oxygen Species/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line, Tumor , Glutathione/metabolism
3.
J Colloid Interface Sci ; 671: 216-231, 2024 May 23.
Article En | MEDLINE | ID: mdl-38801796

Colorectal cancer (CRC) is a prevalent malignancy with insidious onset and diagnostic challenges, highlighting the need for therapeutic approaches to enhance theranostic outcomes. In this study, we elucidated the unique temperature-resistant properties of the oncolytic vaccinia virus (OVV), which can synergistically target tumors under photothermal conditions. To capitalize on this characteristic, we harnessed the potential of the OVV by surface-loading it with indocyanine green (ICG) and encapsulating it within a platelet membrane (PLTM), resulting in the creation of PLTM-ICG-OVV (PIOVV). This complex seamlessly integrates virotherapy, photodynamic therapy (PDT), and photothermal therapy (PTT). The morphology, size, dispersion stability, optical properties, and cellular uptake of PIOVV were evaluated using transmission electron microscopy (TEM). In vitro and in vivo experiments revealed specificity of PIOVV for cancer cells; it effectively induced apoptosis and suppressed CT26 cell proliferation. In mouse models, PIOVV exhibits enhanced fluorescence at tumor sites, accompanied by prolonged blood circulation. Under 808 nm laser irradiation, PIOVV significantly inhibited tumor growth. This strategy holds the potential for advancing phototherapy, oncolytic virology, drug delivery, and tumor-specific targeting, particularly in the context of CRC theranostics.

4.
Oncol Lett ; 27(5): 237, 2024 May.
Article En | MEDLINE | ID: mdl-38601181

The objective of the present study was to assess the levels of circulating cytokines in patients with diffuse large B-cell lymphoma (DLBCL), and to examine the associations between the cytokine levels, clinicopathological manifestations and patient prognosis. The study enrolled 49 patients with DLBCL, 11 patients with chronic lymphocytic leukemia/small lymphocytic lymphoma and 67 healthy controls from Zhejiang Provincial People's Hospital (Hangzhou, China) between January 2017 and January 2020. The serum levels of interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-γ were measured using flow cytometry. The IL-6, IL-10 and IFN-γ levels were significantly raised in patients with DLBCL compared with those in the healthy controls (P<0.05). The levels of IL-10 were significantly higher in patients with raised levels of circulating lactate dehydrogenase (P<0.05), while increases in both IL-6 and IL-10 were associated with raised C-reactive protein (CRP) levels, with IL-6 levels positively associated with those of serum CRP (P<0.01; r=0.66). Additionally, International Prognostic Index (IPI) risk stratification of patients with DLBCL was strongly associated with circulating IL-6 and IL-10 levels. Raised IL-6, IL-10 and TNF-α levels were linked with worse short-term treatment efficacies (P<0.05). Moreover, the accuracy of the model predicting short-term treatment response in patients with DLBCL, obtained using the support vector machine algorithm, was 81.63%. It was also found that raised serum IL-6 and IL-10 levels, together with reduced levels of IL-17, were associated with survival of <1 year in patients with DLBCL (P<0.05), although no significant link was found between cytokine levels and long-term overall survival. In conclusion, the serum levels of IL-6, IL-10, IL-17, TNF-α and IFN-γ can potentially serve as biological indicators of DLBCL tumor immune status, and combined application with the IPI score can be a robust prognostic indicator in patients with DLBCL.

5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 389-394, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38660841

OBJECTIVE: To investigate the effects of elesclomol-Cu (ES-Cu) on the proliferation and cuproptosis of human acute myeloid leukemia (AML) cells. METHODS: The effects of ES-Cu on the proliferation of AML cells and the AML cells pre-treated with ammonium tetrathiomolybdate (TTM) were examined by CCK-8 assay. The Calcein/PI kit was used to detected the changes in activity and cytotoxicity of AML cells induced by ES-Cu. Flow cytometry and Cytation3 fully automated cell imaging multifunctional detection system were used to analyze DCFH-DA fluorescence intensity, so as to determine the level of reactive oxygen species (ROS). The GSH and GSSG detection kits were used to measure the intracellular GSH content. Western blot was used to detected the expression of cuproptosis-related proteins ATP7B, FDX1, DLAT and DPYD. RESULTS: ES-Cu inhibited the proliferation of Kasumi-1 and HL-60 cells in a concentration-dependent manner (r Kasumi-1=-0.99, r HL-60=-0.98). As the concentration of ES-Cu increased, the level of intracellular ROS also increased (P <0.01-0.001). TTM could significantly reverse the inhibitory effect of ES-Cu on cell proliferation and its promoting effect on ROS. With the increase of ES-Cu concentration, the content of GSH was decreased (r =-0.98), and Western blot showed that the protein expressions of ATP7B, FDX1, DLAT and DPYD were significantly reduced (P <0.05). CONCLUSION: ES-Cu can induce cuproptosis in AML cells, which provides a new idea for the treatment of AML.


Cell Proliferation , Hydrazines , Leukemia, Myeloid, Acute , Molybdenum , Reactive Oxygen Species , Humans , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , HL-60 Cells , Cell Line, Tumor , Copper/pharmacology
6.
Cell Mol Biol Lett ; 29(1): 53, 2024 Apr 14.
Article En | MEDLINE | ID: mdl-38616283

Reactive oxygen species (ROS) serve as typical metabolic byproducts of aerobic life and play a pivotal role in redox reactions and signal transduction pathways. Contingent upon their concentration, ROS production not only initiates or stimulates tumorigenesis but also causes oxidative stress (OS) and triggers cellular apoptosis. Mounting literature supports the view that ROS are closely interwoven with the pathogenesis of a cluster of diseases, particularly those involving cell proliferation and differentiation, such as myelodysplastic syndromes (MDS) and chronic/acute myeloid leukemia (CML/AML). OS caused by excessive ROS at physiological levels is likely to affect the functions of hematopoietic stem cells, such as cell growth and self-renewal, which may contribute to defective hematopoiesis. We review herein the eminent role of ROS in the hematological niche and their profound influence on the progress of MDS. We also highlight that targeting ROS is a practical and reliable tactic for MDS therapy.


Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Myelodysplastic Syndromes , Humans , Reactive Oxygen Species , Oxidative Stress , Apoptosis , Carcinogenesis
7.
Int Immunopharmacol ; 132: 111866, 2024 May 10.
Article En | MEDLINE | ID: mdl-38603854

OBJECTIVE: Nasopharyngeal carcinoma (NPC) remains a challenging cancer to treat. This study investigates the molecular mechanisms of Hedyotis diffusa Willd (HDW) combined with Andrographis paniculata (AP) in treating NPC. METHODS: Key compounds and target genes in HDW and AP were analyzed using network pharmacology. Protein-protein interaction (PPI) networks were constructed with STRING and visualized using Cytoscape. MCODE identified critical clusters, while DAVID facilitated GO and KEGG analyses. In vivo and in vitro experiments evaluated HDW-AP effects on NPC, including tumor volume, weight, Ki-67 expression, cell apoptosis, migration, invasion, cell cycle distribution, and DNA damage. RESULTS: The database identified 495 NPC-related genes and 26 compounds in the HDW-AP pair, targeting 165 genes. Fifty-eight potential therapeutic genes were found, leading to 18 key targets. KEGG analysis revealed a significant impact on 78 pathways, especially cancer pathways. Both in vivo and in vitro tests showed HDW-AP inhibited NPC cell proliferation, migration, invasion, and induced apoptosis. Mechanistically, this was achieved through AKT1 downregulation and VEGFA upregulation. CONCLUSION: The combination of HDW and AP targets 16 key genes to impede the development of NPC, primarily by modulating AKT1 and VEGFA pathways.


Hedyotis , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Proto-Oncogene Proteins c-akt , Vascular Endothelial Growth Factor A , Proto-Oncogene Proteins c-akt/metabolism , Humans , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Animals , Cell Line, Tumor , Mice, Nude , Apoptosis/drug effects , Mice , Gene Expression Regulation, Neoplastic/drug effects , Xenograft Model Antitumor Assays , Andrographis/chemistry , Cell Proliferation/drug effects , Up-Regulation/drug effects , Mice, Inbred BALB C , Cell Movement/drug effects , Drug Synergism , Protein Interaction Maps , Carcinogenesis/drug effects , Andrographis paniculata , Down-Regulation , Male
8.
Oncoimmunology ; 13(1): 2322173, 2024.
Article En | MEDLINE | ID: mdl-38419758

Pancreatic ductal adenocarcinoma (PDAC) is currently difficult to treat, even when therapies are combined with immune checkpoint blockade (ICB). A novel strategy for immunotherapy would be to maximize the therapeutic potential of oncolytic viruses (OVs), which have been proven to engage the regulation of tumor microenvironment (TME) and cause-specific T-cell responses. To boost tumor sensitivity to ICB therapy, this study aimed to investigate how glutathione peroxide 4 (GPX4)-loaded OVs affect CD8+ T cells and repair the immunosuppressive environment. Here, we successfully constructed a novel recombinant oncolytic vaccinia virus (OVV) encoding the mouse GPX4 gene. We found the OVV-GPX4 effectively replicated in tumor cells and prompted the expression of GPX4 in T cells. Our research indicated that OVV-GPX4 could reshape the TME, rectify the depletion of CD8+T cells, and enhance the antitumor effects of ICB therapy.


Carcinoma, Pancreatic Ductal , Oncolytic Virotherapy , Oncolytic Viruses , Pancreatic Neoplasms , Animals , Mice , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/therapy , CD8-Positive T-Lymphocytes , Oncolytic Viruses/genetics , Pancreatic Neoplasms/therapy , Tumor Microenvironment , Vaccinia virus/genetics
9.
Mol Pharm ; 21(2): 410-426, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38170627

Cancer immunotherapy is a treatment method that activates or enhances the autoimmune response of the body to fight tumor growth and metastasis, has fewer toxic side effects and a longer-lasting efficacy than radiotherapy and chemotherapy, and has become an important means for the clinical treatment of cancer. However, clinical results from immunotherapy have shown that most patients lack responsiveness to immunotherapy and cannot benefit from this treatment strategy. The tumor microenvironment (TME) plays a critical role in the response to immunotherapy. The TME typically prevents effective lymphocyte activation, reducing their infiltration, and inhibiting the infiltration of effector T cells. According to the characteristic differences between the TME and normal tissues, various nanoplatforms with TME targeting and regulation properties have been developed for more precise regulation of the TME and have the ability to codeliver a variety of active pharmaceutical ingredients, thereby reducing systemic toxicity and improving the therapeutic effect of antitumor. In addition, the precise structural design of the nanoplatform can integrate specific functional motifs, such as surface-targeted ligands, degradable backbones, and TME stimulus-responsive components, into nanomedicines, thereby reshaping the tumor microenvironment, improving the body's immunosuppressive state, and enhancing the permeability of drugs in tumor tissues, in order to achieve controlled and stimulus-triggered release of load cargo. In this review, the physiological characteristics of the TME and the latest research regarding the application of TME-regulated nanoplatforms in improving antitumor immunotherapy will be described. Furthermore, the existing problems and further applications perspectives of TME-regulated platforms for cancer immunotherapy will also be discussed.


Neoplasms , Tumor Microenvironment , Humans , Immunotherapy , Bulk Drugs , Immunosuppressive Agents , Neoplasms/drug therapy
10.
Hepatobiliary Pancreat Dis Int ; 23(3): 249-256, 2024 Jun.
Article En | MEDLINE | ID: mdl-38040524

BACKGROUND: Cancer-related fatigue (CRF) is a common and debilitating symptom experienced by patients with advanced-stage cancer, especially those undergoing antitumor therapy. This study aimed to evaluate the efficacy and safety of Renshenguben (RSGB) oral solution, a ginseng-based traditional Chinese medicine, in alleviating CRF in patients with advanced hepatocellular carcinoma (HCC) receiving antitumor treatment. METHODS: In this prospective, open-label, controlled, multicenter study, patients with advanced HCC at BCLC stage C and a brief fatigue inventory (BFI) score of ≥ 4 were enrolled. Participants were assigned to the RSGB group (RSGB, 10 mL twice daily) or the control group (with supportive care). Primary and secondary endpoints were the change in multidimensional fatigue inventory (MFI) score, and BFI and functional assessment of cancer therapy-hepatobiliary (FACT-Hep) scores at weeks 4 and 8 after enrollment. Adverse events (AEs) and toxicities were assessed. RESULTS: A total of 409 participants were enrolled, with 206 assigned to the RSGB group. At week 4, there was a trend towards improvement, but the differences were not statistically significant. At week 8, the RSGB group exhibited a significantly lower MFI score (P < 0.05) compared to the control group, indicating improved fatigue levels. Additionally, the RSGB group showed significantly greater decrease in BFI and FACT-Hep scores at week 8 (P < 0.05). Subgroup analyses among patients receiving various antitumor treatments showed similar results. Multivariate linear regression analyses revealed that the RSGB group experienced a significantly substantial decrease in MFI, BFI, and FACT-Hep scores at week 8. No serious drug-related AEs or toxicities were observed. CONCLUSIONS: RSGB oral solution effectively reduced CRF in patients with advanced HCC undergoing antitumor therapy over an eight-week period, with no discernible toxicities. These findings support the potential of RSGB oral solution as an adjunctive treatment for managing CRF in this patient population.


Carcinoma, Hepatocellular , Liver Neoplasms , Panax , Humans , Carcinoma, Hepatocellular/complications , Prospective Studies , Liver Neoplasms/complications , Fatigue/drug therapy , Fatigue/etiology
11.
Redox Biol ; 69: 103007, 2024 Feb.
Article En | MEDLINE | ID: mdl-38150993

Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors and the fourth leading cause of cancer-related death globally, which is characterized by complicated pathophysiology, high recurrence rate, and poor prognosis. Our previous study has demonstrated that disulfiram (DSF)/Cu could be repurposed for the treatment of HCC by inducing ferroptosis. However, the effectiveness of DSF/Cu may be compromised by compensatory mechanisms that weaken its sensitivity. The mechanisms underlying these compensatory responses are currently unknown. Herein, we found DSF/Cu induces endoplasmic reticulum stress with disrupted ER structures, increased Ca2+ level and activated expression of ATF4. Further studies verified that DSF/Cu induces both ferroptosis and cuproptosis, accompanied by the depletion of GSH, elevation of lipid peroxides, and compensatory increase of xCT. Comparing ferroptosis and cuproptosis, it is interesting to note that GSH acts at the crossing point of the regulation network and therefore, we hypothesized that compensatory elevation of xCT may be a key aspect of the therapeutic target. Mechanically, knockdown of ATF4 facilitated the DSF/Cu-induced cell death and exacerbated the generation of lipid peroxides under the challenge of DSF/Cu. However, ATF4 knockdown was unable to block the compensatory elevation of xCT and the GSH reduction. Notably, we found that DSF/Cu induced the accumulation of ubiquitinated proteins, promoted the half-life of xCT protein, and dramatically dampened the ubiquitination-proteasome mediated degradation of xCT. Moreover, both pharmacologically and genetically suppressing xCT exacerbated DSF/Cu-induced cell death. In conclusion, the current work provides an in-depth study of the mechanism of DSF/Cu-induced cell death and describes a framework for the further understanding of the crosstalk between ferroptosis and cuproptosis. Inhibiting the compensatory increase of xCT renders HCC cells more susceptible to DSF/Cu, which may provide a promising synergistic strategy to sensitize tumor therapy and overcome drug resistance, as it activates different programmed cell death.


Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Disulfiram/pharmacology , Disulfiram/chemistry , Copper/chemistry , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Lipid Peroxides , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics
12.
Mini Rev Med Chem ; 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37724679

Lymphoma is the eighth most common type of cancer worldwide. Currently, lymphoma is mainly classified into two main groups: Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL), with NHL accounting for 80% to 90% of the cases. NHL is primarily divided into B, T, and natural killer (NK) cell lymphoma. Nanotechnology is developing rapidly and has made significant contributions to the field of medicine. This review summarizes the advancements of nanobiotechnology in recent years and its applications in the treatment of NHL, especially in diffuse large B cell lymphoma (DLBCL), central nerve cell lymphoma, and follicular lymphoma. The technologies discussed include clinical imaging, targeted drug delivery, photodynamic therapy (PDT), and thermodynamic therapy for lymphoma. This review aims to provide a better understanding of the use of nanotechnology in the treatment of non-Hodgkin's lymphoma.

14.
Apoptosis ; 28(11-12): 1520-1533, 2023 12.
Article En | MEDLINE | ID: mdl-37634193

APR3 (Apoptosis-related protein 3) is a gene that has recently been identified to be associated with apoptosis. The gene is located on human chromosome 2p22.3 and contains both transmembrane and EGF (epidermal growth factor)-like domains. Additionally, it has structural sites, including AP1, SP1, and MEF2D, that indicate NFAT (nuclear factor of activated T cells) and NF-κB (nuclear factor kappa-B) may be transcription factors for this gene. Functionally, APR3 participates in apoptosis due to the induction of mitochondrial damage to release mitochondrial cytochrome C. Concurrently, APR3 affects the cell cycle by altering the expression of Cyclin D1, which, in turn, affects the incidence and growth of malignancies and promotes cell differentiation. Previous reports indicate that APR3 is located in lysosomal membranes, where it contributes to lysosomal activity and participates in autophagy. While further research is required to determine the precise role and molecular mechanisms of APR3, earlier studies have laid the groundwork for APR3 research. There is growing evidence supporting the significance of APR3 in oncology. Therefore, this review aims to examine the current state of knowledge on the role of the newly discovered APR3 in tumorigenesis and to generate fresh insights and suggestions for future research.


Apoptosis , Neoplasms , Humans , Apoptosis/genetics , Apoptosis Regulatory Proteins/metabolism , Neoplasms/genetics , Neoplasms/therapy , Oxidative Stress , Autophagy/genetics , NF-kappa B/metabolism
17.
Chemosphere ; 331: 138769, 2023 Aug.
Article En | MEDLINE | ID: mdl-37100252

Analyzing the levels of anticancer medications in biological samples and body fluids reveals important details on the course and effects of chemotherapy. p (L-Cys)/graphitic-carbon nitride (g-C3N4)/GCE, a modified glassy carbon electrode, was created for the current study's electrochemical detection of methotrexate (MTX), a drug used to treat breast cancer, in pharmaceutical fluid samples. l-Cysteine was electro-polymerized on the surface of the g-C3N4/GCE after the g-C3N4 was first modified to prepare the p (L-Cys)/g-C3N4/GCE. Analyses of morphology and structure showed that well-crystalline p (L-Cys) on g-C3N4/GCE was successfully electropolymerized. Studying the electrochemical characteristics of p (L-Cys)/g-C3N4/GCE using CV and DPV techniques revealed a synergistic impact between g-C3N4 and l-cysteine that improved the stability and selectivity of the electrochemical oxidation of MTX while enhancing the electrochemical signal. Results showed that 7.5-780 µM was the linear range, and that 0.11841 µA/µM and 6 nM, respectively, were the sensitivity and limit of detection. The applicability of the suggested sensors was assessed using real pharmaceutical preparations, and the results showed that p (L-Cys)/g-C3N4/GCE had a high degree of precision. Five breast cancer patients who volunteered and provided prepared blood serum samples between the ages of 35 and 50 were used to examine the validity and accuracy of the proposed sensor in the current work for the determination of MTX. The results showed good recovery values (greater than 97.20%), appropriate accuracy (RSD less than 5.11%), and good agreement between the ELISA and DPV analysis results. These findings showed that p (L-Cys)/g-C3N4/GCE can be applied as a trustworthy MTX sensor for MTX level monitoring in blood samples and pharmaceutical samples.


Breast Neoplasms , Carbon , Humans , Adult , Middle Aged , Female , Carbon/chemistry , Methotrexate , Cysteine , Breast Neoplasms/drug therapy , Electrodes , Pharmaceutical Preparations , Electrochemical Techniques/methods
19.
Front Oncol ; 13: 905139, 2023.
Article En | MEDLINE | ID: mdl-36874129

Gastric cancer (GC) is one of the most common neoplastic malignancies, which permutes a fourth of cancer-related mortality globally. RNA modification plays a significant role in tumorigenesis, the underlying molecular mechanism of how different RNA modifications directly affect the tumor microenvironment (TME) in GC is unclear. Here, we profiled the genetic and transcriptional alterations of RNA modification genes (RMGs) in GC samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts. Through the unsupervised clustering algorithm, we identified three distinct RNA modification clusters and found that they participate in different biological pathways and starkly correlate with the clinicopathological characteristics, immune cell infiltration, and prognosis of GC patients. Subsequently, univariate Cox regression analysis unveiled 298 of 684 subtype-related differentially expressed genes (DEGs) are tightly interwoven to prognosis. In addition, we conducted the principal component analysis to develop the RM_Score system, which was used to quantify and predict the prognostic value of RNA modification in GC. Our analysis indicated that patients with high RM_Score were characterized by higher tumor mutational burden, mutation frequency, and microsatellite instability which were more susceptible to immunotherapy and had a favorable prognosis. Altogether, our study uncovered RNA modification signatures that may have a potential role in the TME and prediction of clinicopathological characteristics. Identification of these RNA modifications may provide a new understanding of immunotherapy strategies for gastric cancer.

20.
J Nanobiotechnology ; 21(1): 77, 2023 Mar 03.
Article En | MEDLINE | ID: mdl-36869341

Nanomedicine technology is a rapidly developing field of research and application that uses nanoparticles as a platform to facilitate the diagnosis and treatment of diseases. Nanoparticles loaded with drugs and imaging contrast agents have already been used in clinically, but they are essentially passive delivery carriers. To make nanoparticles smarter, an important function is the ability to actively locate target tissues. It enables nanoparticles to accumulate in target tissues at higher concentrations, thereby improving therapeutic efficacy and reducing side effects. Among the different ligands, the CREKA peptide (Cys-Arg-Glu-Lys-Ala) is a desirable targeting ligand and has a good targeting ability for overexpressed fibrin in different models, such as cancers, myocardial ischemia-reperfusion, and atherosclerosis. In this review, the characteristic of the CREKA peptide and the latest reports regarding the application of CREKA-based nanoplatforms in different biological tissues are described. In addition, the existing problems and future application perspectives of CREKA-based nanoplatforms are also addressed.


Atherosclerosis , Nanoparticles , Humans , Contrast Media , Nanomedicine
...