Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Gastroenterology ; 131(5): 1418-30, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17101318

ABSTRACT

BACKGROUND & AIMS: The identification of novel genetic and epigenetic markers indicative of changes in the pathogenesis of colon cancer, along with easier-to-use, more sensitive assay methods, may improve the detection, treatment, and overall prognosis of this malignancy. METHODS: Using methylation-specific arbitrarily primed polymerase chain reaction, a fragment of the Aristaless-like homeobox-4 (ALX4) gene that was highly methylated in colon adenomas and cancer was identified. Methylation of ALX4 was analyzed in colorectal adenomas and cancers, in the liver metastases of patients with colorectal cancer, and in 61 other neoplasias, including gastric, esophageal, and hepatocellular cancer and cholangiocarcinoma. ALX4 methylation was also analyzed in the serum of 30 patients with colon cancer. RESULTS: ALX4 gene methylation was confirmed in colon adenomas (11/13) and more frequently present in primary colorectal cancers (30/47) compared with the normal colon mucosa (0/21) (P < .0001). In addition, ALX4 methylation was frequently observed in adenocarcinomas of the esophagus (12/14), stomach (11/15), and bile ducts (4/5) compared with all other cancers (P < .001). ALX4 gene methylation was also more frequently found in sera of patients with colon cancer compared with noncancer controls (P < .0001). Using a cutoff of 41.4 pg/mL, sensitivity and specificity were 83.3% and 70%, respectively. CONCLUSIONS: Apart from colon adenomas and primary and metastatic colorectal cancers, ALX4 is frequently methylated in adenocarcinomas of the gastrointestinal tract. ALX4 gene methylation in sera of patients with cancer may thus serve as a methylation-specific test for colon and other gastrointestinal cancers.


Subject(s)
Adenocarcinoma/genetics , Colorectal Neoplasms/genetics , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Adult , Aged , Aged, 80 and over , Base Sequence , Colonic Polyps/genetics , DNA Methylation , Female , Humans , Male , Middle Aged , Molecular Sequence Data , Neoplasm Metastasis , Precancerous Conditions/genetics
2.
Neoplasia ; 7(8): 771-8, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16207479

ABSTRACT

The role of promoter methylation in the process of cancer cell metastasis has, however, not yet been studied. Recently, methylation of the TPEF (transmembrane protein containing epidermal growth factor and follistatin domain) gene was reported in human colon, gastric, and bladder cancer cells. Using the Methylight assay, TPEF/HPP1 gene methylation was assessed in primary colorectal cancers (n = 47), matched normal colon mucosa, as well as in the liver metastasis of 24 patients with colorectal cancer, and compared to the methylation status of the TIMP-3, APC, DAPK, caveolin-2, and p16 genes. TPEF was frequently methylated in primary colorectal cancers (36 of 47) compared to the normal colon mucosa (1 of 21) (P < .0001), and TPEF mRNA expression in colon cancer cell lines was restored after treatment with 5-aza-2'-deoxycytidine. The p16 and APC genes were also frequently methylated in primary colorectal cancers (P < .02) compared to the normal colon mucosa. Interestingly, promoter methylation was significantly more frequent in proximal, nonrectal cancers (P < .05). Furthermore, a high degree of methylation of the TPEF gene was also observed in liver metastasis (19 of 24). In summary, we observed frequent TPEF methylation in primary colorectal cancers and liver metastases, indicating that epigenetic alterations are not only present in the early phases of carcinogenesis, but are also common in metastatic lesions. The high frequency of TPEF methylation in this series of colorectal cancers underscores the importance of epigenetic changes as targets for the development of molecular tests for cancer diagnosis.


Subject(s)
Colorectal Neoplasms/genetics , DNA Methylation , Liver Neoplasms/genetics , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Colorectal Neoplasms/pathology , DNA, Neoplasm/analysis , DNA, Neoplasm/genetics , Female , Humans , Liver Neoplasms/secondary , Male , Middle Aged , Promoter Regions, Genetic
3.
Genome Biol ; 4(11): R71, 2003.
Article in English | MEDLINE | ID: mdl-14611657

ABSTRACT

BACKGROUND: The olfactory receptor gene family is one of the largest in the mammalian genome. Previous computational analyses have identified approximately 1,500 mouse olfactory receptors, but experimental evidence confirming olfactory function is available for very few olfactory receptors. We therefore screened a mouse olfactory epithelium cDNA library to obtain olfactory receptor expressed sequence tags, providing evidence of olfactory function for many additional olfactory receptors, as well as identifying gene structure and putative promoter regions. RESULTS: We identified more than 1,200 odorant receptor cDNAs representing more than 400 genes. Using real-time PCR to confirm expression level differences suggested by our screen, we find that transcript levels in the olfactory epithelium can differ between olfactory receptors by up to 300-fold. Differences for one gene pair are apparently due to both unequal numbers of expressing cells and unequal transcript levels per expressing cell. At least two-thirds of olfactory receptors exhibit multiple transcriptional variants, with alternative isoforms of both 5' and 3' untranslated regions. Some transcripts (5%) utilize splice sites within the coding region, contrary to the stereotyped olfactory receptor gene structure. Most atypical transcripts encode nonfunctional olfactory receptors, but can occasionally increase receptor diversity. CONCLUSIONS: Our cDNA collection confirms olfactory function of over one-third of the intact mouse olfactory receptors. Most of these genes were previously annotated as olfactory receptors based solely on sequence similarity. Our finding that different olfactory receptors have different expression levels is intriguing given the one-neuron, one-gene expression regime of olfactory receptors. We provide 5' untranslated region sequences and candidate promoter regions for more than 300 olfactory receptors, valuable resources for computational regulatory motif searches and for designing olfactory receptor microarrays and other experimental probes.


Subject(s)
Alternative Splicing , Expressed Sequence Tags , Olfactory Mucosa/metabolism , Receptors, Odorant/genetics , Animals , DNA/chemistry , DNA/genetics , DNA, Complementary/chemistry , DNA, Complementary/genetics , Female , Gene Expression Profiling , Gene Library , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Phylogeny , Pseudogenes/genetics , Receptors, Odorant/classification , Sequence Analysis, DNA
4.
Hum Mol Genet ; 11(5): 535-46, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11875048

ABSTRACT

We report a comprehensive comparative analysis of human and mouse olfactory receptor (OR) genes. The OR family is the largest mammalian gene family known. We identify approximately 93% of an estimated 1500 mouse ORs, exceeding previous estimates and the number of human ORs by 50%. Only 20% are pseudogenes, giving a functional OR repertoire in mice that is three times larger than that of human. The proteins encoded by intact human ORs are less highly conserved than those of mouse, in patterns that suggest that even some apparently intact human OR genes may encode non-functional proteins. Mouse ORs are clustered in 46 genomic locations, compared to a much more dispersed pattern in human. We find orthologous clusters at syntenic human locations for most mouse genes, indicating that most OR gene clusters predate primate-rodent divergence. However, many recent local OR duplications in both genomes obscure one-to-one orthologous relationships, thereby complicating cross-species inferences about OR-ligand interactions. Local duplications are the major force shaping the gene family. Recent interchromosomal duplications of ORs have also occurred, but much more frequently in human than in mouse. In addition to clarifying the evolutionary forces shaping this gene family, our study provides the basis for functional studies of the transcriptional regulation and ligand-binding capabilities of the OR gene family.


Subject(s)
Evolution, Molecular , Mice/genetics , Receptors, Odorant/genetics , Amino Acid Sequence , Animals , Base Sequence , Chromosome Mapping , Chromosomes, Artificial, Bacterial , Conserved Sequence , Humans , Molecular Sequence Data , Multigene Family , Phylogeny , Pseudogenes , Sequence Alignment , Smell/genetics , Synteny , Tandem Repeat Sequences
SELECTION OF CITATIONS
SEARCH DETAIL
...