Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Ecol Evol ; 14(7): e11723, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988340

ABSTRACT

Cedrela odorata is considered the second most invasive tree species of the Galapagos Islands. Although it is listed in CITES Appendix II and there are population losses in mainland Ecuador, in Galapagos it is paradoxically a species of concern due to its invasive potential. Genetic studies can shed light on the invasion history of introduced species causing effects on unique ecosystems like the Galapagos. We analyzed nine microsatellite markers in C. odorata individuals from Galapagos and mainland Ecuador to describe the genetic diversity and population structure of C. odorata in the Galapagos and to explore the origin and invasion history of this species. The genetic diversity found for C. odorata in Galapagos (H e = 0.55) was lower than reported in the mainland (H e = 0.81), but higher than other invasive insular plant species, which could indicate multiple introductions. Our results suggest that Ecuador's northern Coastal region is the most likely origin of the Galapagos C. odorata, although further genomic studies, like Whole Genome Sequencing, Rad-Seq, and/or Whole Genome SNP analyses, are needed to confirm this finding. Moreover, according to our proposed pathway scenarios, C. odorata was first introduced to San Cristobal and/or Santa Cruz from mainland Ecuador. After these initial introductions, C. odorata appears to have arrived to Isabela and Floreana from either San Cristobal or Santa Cruz. Here, we report the first genetic study of C. odorata in the Galapagos and the first attempt to unravel the invasion history of this species. The information obtained in this research could support management and control strategies to lessen the impact that C. odorata has on the islands' local flora and fauna.


Cedrela odorata es considerada la segunda especie más invasora de árboles en las Islas Galápagos. Esta especie está catalogada en el Apéndice II de CITES y sus poblaciones se encuentran amenazadas en Ecuador continental, pero paradójicamente en Galápagos es una especie de preocupación por su potencial invasor. Estudios genéticos pueden ayudar a entender la historia de invasión de especies introducidas que causan efectos en ecosistemas únicos como Galápagos. En este estudio, analizamos 9 marcadores microsatélites en individuos de Galápagos y Ecuador continental para describir la diversidad genética y estructura poblacional de C. odorata en Galápagos y explorar el origen e historia de invasión de esta especie. La diversidad genética encontrada para C. odorata en Galápagos (H e = 0.55) fue menor que la reportada en continente (H e = 0.81), pero mayor que la de otras especies de plantas insulares invasoras, lo que podría sugerir múltiples introducciones de esta especie a Galápagos. Nuestros resultados sugieren que la costa norte ecuatoriana es el origen más probable de C. odorata en Galápagos, aunque más estudios, como secuenciación del genoma completo, Rad­Seq y/o análisis de SNPs, son necesarios para confirmar este hecho. Además, de acuerdo con los escenarios propuestos, es posible que C. odorata haya sido introducida primero a San Cristóbal y/o Santa Cruz desde Ecuador continental. Después de estas introducciones iniciales, parece haber llegado a Isabela y Floreana desde San Cristóbal o Santa Cruz. Este es el primer estudio genético de C. odorata en Galápagos y el primer intento de esclarecer la historia de invasión de esta especie. La información obtenida en esta investigación podría apoyar estrategias de manejo para disminuir el impacto que C. odorata tiene sobre la flora y fauna nativa de estas islas.

2.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39020264

ABSTRACT

Babaco is a hybrid cultivar native to the Andean region of Ecuador and Colombia, commercially attractive for its fruit. Babaco production in Ecuador faces losses from plant pathogens like babaco mosaic virus (BabMV), an RNA virus that causes chlorosis, leaf mottling, and deformation. Phylogenetic studies link BabMV to papaya mosaic virus (PapMV), alternanthera mosaic virus, and senna mosaic virus. To address this threat, we developed novel species-specific primers to detect BabMV targeting a 165 bp region of the coat protein (CP). Genus-specific primers were designed to validate the species-specific primers and attest their ability to discriminate between BabMV and its closest relatives. These primers targeted a 175 bp fragment of the CP region. The most effective sets of primers were chosen for reverse transcription polymerase chain reaction (RT-PCR) and SYBR® Green-based quantitative reverse transcription polymerase chain reaction (RT-qPCR) in symptomatic and asymptomatic babaco plants. Among 28 plants tested, 25 were positive and 3 were negative for BabMV using species-specific and genus-specific primers in RT-PCR and RT-qPCR, while the PapMV positive control was detected with the genus-specific primers and was negative for the species-specific primers. These primers represent a valuable molecular tool for detecting BabMV, potentially enhancing crop management.


Subject(s)
DNA Primers , Plant Diseases , Plant Diseases/virology , DNA Primers/genetics , Ecuador , Capsid Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Phylogeny , Real-Time Polymerase Chain Reaction/methods , Species Specificity , Colombia
3.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38888171

ABSTRACT

Vaccinium floribundum Kunth, known as "mortiño," is an endemic shrub species of the Andean region adapted to harsh conditions in high-altitude ecosystems. It plays an important ecological role as a pioneer species in the aftermath of deforestation and human-induced fires within paramo ecosystems, emphasizing its conservation value. While previous studies have offered insights into the genetic diversity of mortiño, comprehensive genomic studies are still missing to fully understand the unique adaptations of this species and its population status, highlighting the importance of generating a reference genome for this plant. ONT and Illumina sequencing were used to establish a reference genome for this species. Three different de novo genome assemblies were generated and compared for quality, continuity and completeness. The Flye assembly was selected as the best and refined by filtering out short ONT reads, screening for contaminants and genome scaffolding. The final assembly has a genome size of 529 Mb, containing 1,317 contigs and 97% complete BUSCOs, indicating a high level of integrity of the genome. Additionally, the LTR Assembly Index of 12.93 further categorizes this assembly as a reference genome. The genome of V. floribundum reported in this study is the first reference genome generated for this species, providing a valuable tool for further studies. This high-quality genome, based on the quality and completeness parameters obtained, will not only help uncover the genetic mechanisms responsible for its unique traits and adaptations to high-altitude ecosystems but will also contribute to conservation strategies for a species endemic to the Andes.


Subject(s)
Genome, Plant , Vaccinium , Vaccinium/genetics , Molecular Sequence Annotation , Genomics/methods , High-Throughput Nucleotide Sequencing
4.
Environ Microbiol Rep ; 16(3): e13272, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692845

ABSTRACT

Native microbial consortia have been proposed for biological wastewater treatment, but their diversity and function remain poorly understood. This study investigated three native microalgae-bacteria consortia collected from the Amazon, Highlands, and Galapagos regions of Ecuador to assess their metagenomes and wastewater remediation potential. The consortia were evaluated for 12 days under light (LC) and continuous dark conditions (CDC) to measure their capacity for nutrient and organic matter removal from synthetic wastewater (SWW). Overall, all three consortia demonstrated higher nutrient removal efficiencies under LC than CDC, with the Amazon and Galapagos consortia outperforming the Highlands consortium in nutrient removal capabilities. Despite differences in α- and ß-diversity, microbial species diversity within and between consortia did not directly correlate with their nutrient removal capabilities. However, all three consortia were enriched with core taxonomic groups associated with wastewater remediation activities. Our analyses further revealed higher abundances for nutrient removing microorganisms in the Amazon and Galapagos consortia compared with the Highland consortium. Finally, this study also uncovered the contribution of novel microbial groups that enhance wastewater bioremediation processes. These groups have not previously been reported as part of the core microbial groups commonly found in wastewater communities, thereby highlighting the potential of investigating microbial consortia isolated from ecosystems of megadiverse countries like Ecuador.


Subject(s)
Bacteria , Metagenomics , Microbial Consortia , Wastewater , Ecuador , Wastewater/microbiology , Microbial Consortia/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Microalgae/classification , Microalgae/metabolism , Water Purification , Biodegradation, Environmental , Metagenome
5.
Animals (Basel) ; 14(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38539936

ABSTRACT

Livestock predation induces global human-wildlife conflict, triggering the retaliatory killing of large carnivores. Although domestic dogs (Canis familiaris) contribute to livestock depredation, blame primarily falls on wild predators. Dogs can also transmit pathogens between wildlife, domestic animals, and humans. Therefore, the presence of free-ranging dogs can have negative consequences for biodiversity conservation, smallholder economy, food supply, and public health, four of the United Nations' Sustainable Developed Goals (SDGs) for 2030. In Ecuador, where livestock sustains rural households, retaliatory poaching threatens Andean bear (Tremarctos ornatus), jaguar (Panthera onca), and puma (Puma concolor) populations. However, the role of dogs in these incidents remains underexplored. The present study evaluates the possibility of reliable molecular identification of predatory species from DNA traces in bite wounds. Our results revealed the presence of dog saliva on four out of six livestock carcasses presumably attacked by wild predators. These findings highlight the importance of rectifying misinformation about large carnivores in Ecuador and the need to control dog populations. We recommend that local administrations incorporate DNA analysis into livestock predation events to examine how common the problem is, and to use the analysis to develop conflict mitigation strategies which are essential for the conservation of large carnivores.

6.
Sci Rep ; 14(1): 2834, 2024 02 03.
Article in English | MEDLINE | ID: mdl-38310153

ABSTRACT

Wildlife conservation in Andean countries is a global priority because of the high levels of biodiversity and endemism. Historically, these countries have had limited resources to monitor wildlife (e.g., through genetic tools) and establish conservation programs. Focusing on the study and emblematic use of a few charismatic species has been a strategic approach to direct efforts for conservation and development planning. Consequently, the Andean bear is a flagship and umbrella species for highly biodiverse Andean countries like Ecuador. The few studies exploring the population genetics of this species have concluded that it has low genetic diversity and few units for conservation as populations appear to be well connected. However, these results might be attributed to ascertainment bias as studies have been performed with heterologous molecular markers. Here, using both mtDNA sequences and species-specific microsatellite markers, we show that Andean bears in Ecuador have population structure. Additionally, we found through the study of three Ecuadorian populations that the species might have a higher genetic diversity than we previously thought. These results could support the revision of research priorities, conservation, and planning strategies to improve connectivity for this species which occurs in crucial biodiversity hotspots.


Subject(s)
Ursidae , Animals , Ecuador , Ursidae/genetics , Genetics, Population , Biodiversity , Conservation of Natural Resources , Genetic Variation
7.
G3 (Bethesda) ; 14(3)2024 03 06.
Article in English | MEDLINE | ID: mdl-38244218

ABSTRACT

The Ecuadorian brown-headed spider monkey (Ateles fusciceps fusciceps) is currently considered one of the most endangered primates in the world and is classified as critically endangered [International union for conservation of nature (IUCN)]. It faces multiple threats, the most significant one being habitat loss due to deforestation in western Ecuador. Genomic tools are keys for the management of endangered species, but this requires a reference genome, which until now was unavailable for A. f. fusciceps. The present study reports the first whole-genome sequence and assembly of A. f. fusciceps generated using Oxford Nanopore long reads. DNA was extracted from a subadult male, and libraries were prepared for sequencing following the Ligation Sequencing Kit SQK-LSK112 workflow. Sequencing was performed using a MinION Mk1C sequencer. The sequencing reads were processed to generate a genome assembly. Two different assemblers were used to obtain draft genomes using raw reads, of which the Flye assembly was found to be superior. The final assembly has a total length of 2.63 Gb and contains 3,861 contigs, with an N50 of 7,560,531 bp. The assembly was analyzed for annotation completeness based on primate ortholog prediction using a high-resolution database, and was found to be 84.3% complete, with a low number of duplicated genes indicating a precise assembly. The annotation of the assembly predicted 31,417 protein-coding genes, comparable with other mammal assemblies. A reference genome for this critically endangered species will allow researchers to gain insight into the genetics of its populations and thus aid conservation and management efforts of this vulnerable species.


Subject(s)
Atelinae , Nanopores , Male , Animals , Ecuador , Endangered Species , Sequence Analysis, DNA , High-Throughput Nucleotide Sequencing , Mammals
8.
Biodivers Data J ; 11: e113396, 2023.
Article in English | MEDLINE | ID: mdl-38028240

ABSTRACT

Studies on genetic variability amongst native and introduced species contribute to a better understanding of the genetic diversity of species along their autochthonous distribution and identify possible routes of introduction. Gonatodescaudiscutatus is a gecko native to western Ecuador and introduced to the Galapagos Islands. Despite being a successful species in human-modified habitats along its native and non-native ranges, neither the colonisation process nor the genetic diversity of this gecko is known. In this study, we analysed 55 individuals from 14 localities in western Ecuador and six localities in San Cristobal Island, Galapagos - the only island with a large, self-sustaining population. We amplified and analysed the genetic variability of two nuclear genes (Cmos and Rag2) and one mitochondrial gene (16S). Cmos and Rag2 sequences presented little to none genetic variability, while 16S allowed us to build a haplotype network. We identified nine haplotypes across mainland Ecuador, two of which are also present in Galapagos. Low genetic diversity between insular and continental populations suggests that the introduction of G.caudiscutatus on the Islands is relatively recent. Due to the widespread geographical distribution of mainland haplotypes, it was not possible to determine the source population of the introduction. This study represents the first exploration of the genetic diversity of Gonatodescaudiscutatus, utilising genetic tools to gain insights into its invasion history in the Galapagos.

9.
PLoS One ; 18(7): e0287120, 2023.
Article in English | MEDLINE | ID: mdl-37437013

ABSTRACT

Rhyacoglanis pulcher is a rare Neotropical rheophilic bumblebee catfish known only from the type locality in the Cis-Andean Amazon region, Ecuador, and the type-species of the genus. So far, the three syntypes collected in 1880 were the only specimens unambiguously associated to the name R. pulcher available in scientific collections. Recently, a specimen was discovered in a fast-flowing stretch of the Villano river, a tributary of the Curaray river, Napo river basin, Ecuador, representing a new record after nearly 140 years. Here, we present this new record, identified by morphology, provide the DNA barcode sequence of the specimen, and propose why the species of Rhyacoglanis are scarce in zoological collections. Additionally, we discuss the intraspecific variation in the color pattern observed in R. pulcher.


Subject(s)
Catfishes , Animals , Catfishes/genetics , Ecuador , Rivers
10.
Microorganisms ; 11(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36838364

ABSTRACT

Microbial communities in the rhizosphere influence nutrient acquisition and stress tolerance. How abiotic and biotic factors impact the plant microbiome in the wild has not been thoroughly addressed. We studied how plant genotype and soil affect the rhizosphere microbiome of Vaccinium floribundum, an endemic species of the Andean region that has not been domesticated or cultivated. Using high-throughput sequencing of the 16S rRNA and ITS region, we characterized 39 rhizosphere samples of V. floribundum from four plant genetic clusters in two soil regions from the Ecuadorian Highlands. Our results showed that Proteobacteria and Acidobacteria were the most abundant bacterial phyla and that fungal communities were not dominated by any specific taxa. Soil region was the main predictor for bacterial alpha diversity, phosphorous and lead being the most interesting edaphic factors explaining this diversity. The interaction of plant genotype and altitude was the most significant factor associated with fungal diversity. This study highlights how different factors govern the assembly of the rhizosphere microbiome of a wild plant. Bacterial communities depend more on the soil and its mineral content, while plant genetics influence the fungal community makeup. Our work illustrates plant-microbe associations and the drivers of their variation in a unique unexplored ecosystem from the Ecuadorian Andes.

11.
PLoS One ; 17(8): e0272713, 2022.
Article in English | MEDLINE | ID: mdl-36040879

ABSTRACT

Yellowfin tuna, Thunnus albacares, is an important global fishery and of particular importance in the Eastern Pacific Ocean (EPO). According to the 2019 Inter-American Tropical Tuna Commission (IATTC) assessment, yellowfin tuna within the EPO is a single stock, and is being managed as one stock. However, previous studies indicate site fidelity, or limited home ranges, of yellowfin tuna which suggests the potential for multiple yellowfin tuna stocks within the EPO, which was supported by a population genetic study using microsatellites. If numerous stocks are present, management at the wrong spatial scales could cause the loss of minor yellowfin tuna populations in the EPO. In this study we used double digestion RADseq to assess the genetic structure of yellowfin tuna in the EPO. A total of 164 yellowfin tuna from Cabo San Lucas, México, and the Galápagos Islands and Santa Elena, Ecuador, were analysed using 18,011 single nucleotide polymorphisms. Limited genetic differentiation (FST = 0.00058-0.00328) observed among the sampling locations (México, Ecuador, Peru, and within Ecuador) is consistent with presence of a single yellowfin tuna population within the EPO. Our findings are consistent with the IATTC assessment and provide further evidence of the need for transboundary cooperation for the successful management of this important fishery throughout the EPO.


Subject(s)
Fisheries , Tuna , Animals , Genetic Drift , Microsatellite Repeats/genetics , Pacific Ocean , Tuna/genetics
12.
Forensic Sci Int ; 325: 110879, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34174769

ABSTRACT

Tsantsas are shrunken human heads originally made for ceremonial purposes by Amazonian indigenous groups of the Shuar and Achuar family, previously called Jivaroan tribes. A significant demand of these objects during the first half of the 20th century led to the manufacture of counterfeit shrunken heads for commercial purposes. For museums where these collections are held, as well as for the indigenous groups who claim their ownership, it is important to identify the origin and authenticity of these tsantsas. We hypothesized that a collection of 14 tsantsas from 3 different museum collections in Ecuador are human and aimed to characterize their sex and potential origin. We amplified the amelogenin gene and performed a high resolution melting analysis to determine their human origin and characterize their sex. We also analyzed a fragment (16209-16402) from the HVR-1 region to identify the mtDNA haplogroups present in the tsantsa collection. Our exploratory results show that all the tsantsas are human and that the collection is comprised of 13 males and 1 female. A total of seven mtDNA haplogroups were found among the tsantsa collection using the mtDNA EMPOP database. These results show a predominance of the Amerindian mtDNA haplogroups B, C and D. Additional principal component analysis, genetic distance tree and haplotype network analyses suggest a relationship between the tsantsa specimens and Native American groups.


Subject(s)
Amelogenin/genetics , DNA, Mitochondrial/genetics , Sex Determination Analysis , Skull , Anthropology, Cultural/history , Ecuador , Ethnicity/genetics , Female , Forensic Genetics , Haplotypes , History, 19th Century , History, 20th Century , Humans , Male , Museums
13.
Elife ; 102021 06 24.
Article in English | MEDLINE | ID: mdl-34165082

ABSTRACT

Invasive species represent one of the foremost risks to global biodiversity. Here, we use population genomics to evaluate the history and consequences of an invasion of wild tomato-Solanum pimpinellifolium-onto the Galápagos Islands from continental South America. Using >300 archipelago and mainland collections, we infer this invasion was recent and largely the result of a single event from central Ecuador. Patterns of ancestry within the genomes of invasive plants also reveal post-colonization hybridization and introgression between S. pimpinellifolium and the closely related Galápagos endemic Solanum cheesmaniae. Of admixed invasive individuals, those that carry endemic alleles at one of two different carotenoid biosynthesis loci also have orange fruits-characteristic of the endemic species-instead of typical red S. pimpinellifolium fruits. We infer that introgression of two independent fruit color loci explains this observed trait convergence, suggesting that selection has favored repeated transitions of red to orange fruits on the Galápagos.


Subject(s)
Fruit/genetics , Fruit/physiology , Genetic Introgression , Introduced Species , Solanum/genetics , Solanum/physiology , Ecuador , Genetic Variation , Pigments, Biological , Species Specificity
14.
Viruses ; 14(1)2021 12 23.
Article in English | MEDLINE | ID: mdl-35062223

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible RNA virus that causes COVID-19. Being aware of the presence of the virus on different types of surfaces and in different environments, and having a protocol for its detection, is important to understand the dynamics of the virus and its shedding patterns. In Ecuador, the detection of viral RNA in urban environmental samples has not been a priority. The present study analyzed samples from two densely populated neighborhoods and one public transportation system in Quito, Ecuador. Viral RNA presence was assessed using RT-LAMP. Twenty-eight out of 300 surfaces tested positive for SARS-CoV-2 RNA (9.33%). Frequently touched surfaces, especially in indoor spaces and on public transportation, were most likely to be positive for viral RNA. Positivity rate association for the two neighborhoods and for the surface type was not found. This study found viral RNA presence on urban surfaces; this information provides an insight into viral dissemination dynamics. Monitoring environmental SARS-CoV-2 could support the public health prevention strategies in Quito, Ecuador.


Subject(s)
Environmental Microbiology , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Transportation , COVID-19/transmission , Cities , Ecuador , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , SARS-CoV-2/genetics
15.
PLoS One ; 15(12): e0243420, 2020.
Article in English | MEDLINE | ID: mdl-33284832

ABSTRACT

The Ecuadorian páramo, a high altitude tundra-like ecosystem, is a unique source of various ecosystem services and distinct biodiversity. Anthropogenic activities are associated with its fragmentation, which alters ecological factors and directly threatens resident species. Vaccinium floribundum Kunth., commonly known as Andean blueberry or mortiño, is a wild shrub endemic to the Andean region and highly valued in Ecuador for its berries, which are widely used in food preparations and hold an important cultural value. Since it is a wild species, mortiño could be vulnerable to environmental changes, resulting in a reduction of the size and distribution of its populations. To evaluate the extent of these effects on the mortiño populations, we assessed the genetic diversity and population structure of the species along the Ecuadorian highlands. We designed and developed a set of 30 species-specific SSR (simple sequence repeats) markers and used 16 of these to characterize 100 mortiño individuals from 27 collection sites. Our results revealed a high degree of genetic diversity (HE = 0.73) for the Ecuadorian mortiño, and a population structure analyses suggested the existence of distinct genetic clusters present in the northern, central and southern highlands. A fourth, clearly differentiated cluster was also found and included individuals from locations at higher elevations. We suggest that the population structure of the species could be explained by an isolation-by-distance model and can be associated with the geological history of the Andean region. Our results suggest that elevation could also be a key factor in the differentiation of mortiño populations. This study provides an extensive overview of the species across its distribution range in Ecuador, contributing to a better understanding of its conservation status. These results can assist in the development of conservation programs for this valuable biological and cultural resource and for the páramo ecosystem as a whole.


Subject(s)
Blueberry Plants/genetics , Ecosystem , Genetic Variation , Microsatellite Repeats/genetics , Blueberry Plants/growth & development , Ecuador , Fruit/genetics , Fruit/growth & development , Humans , Species Specificity
16.
PeerJ ; 8: e9597, 2020.
Article in English | MEDLINE | ID: mdl-32944417

ABSTRACT

Capuli (Prunus serotina subsp. capuli) is a tree species that is widely distributed in the northern Andes. In Prunus, fruit set and productivity appears to be limited by gametophytic self-incompatibility (GSI) which is controlled by the S-Locus. For the first time, this research reveals the molecular structure of the capuli S-RNase (a proxy for S-Locus diversity) and documents how S-Locus diversity influences GSI in the species. To this end, the capuli S-RNase gene was amplified and sequenced in order to design a CAPS (Cleaved Amplified Polymorphic Sequence) marker system that could unequivocally detect S-alleles by targeting the highly polymorphic C2-C3 S-RNase intra-genic region. The devised system proved highly effective. When used to assess S-Locus diversity in 15 P. serotina accessions, it could identify 18 S-alleles; 7 more than when using standard methodologies for the identification of S-alleles in Prunus species. CAPS marker information was subsequently used to formulate experimental crosses between compatible and incompatible individuals (as defined by their S-allelic identity). Crosses between heterozygote individuals with contrasting S-alleles resulted in normal pollen tube formation and growth. In crosses between individuals with exactly similar S-allele identities, pollen tubes often showed morphological alterations and arrested development, but for some (suspected) incompatible crosses, pollen tubes could reach the ovary. The latter indicates the possibility of a genotype-specific breakdown of GSI in the species. Overall, this supports the notion that S-Locus diversity influences the reproductive patterns of Andean capuli and that it should be considered in the design of orchards and the production of basic propagation materials.

17.
Cancer Med ; 9(7): 2390-2402, 2020 04.
Article in English | MEDLINE | ID: mdl-32043750

ABSTRACT

OBJECTIVE: CD47 is an antiphagocytic molecule that contributes to tumor cell resistance in host immune surveillance. CD47 overexpression correlated with tumor progression and shorter survival in lung cancer. However, the expression and functional significance of CD47 in Non-Small Cell Lung Cancer (NSCLC) has not been completely understood. MATERIALS AND METHODS: In this retrospective study, CD47 expression was immunohistochemically examined in tumor biopsies from 169 NSCLC patients. The association of CD47 levels (H-score) with clinicopathological characteristics and survival outcomes was evaluated. RESULTS: CD47 protein was detected in 84% of patients with a median expression of 80% (0-100). Tumor CD47 levels above 1% and 50% were found in 84% and 65.7% of patients, respectively. While, median CD47 staining index was 160 (0-300). Patients were divided into two groups according to CD47 expression (high or low), using a cutoff value of 150. High CD47 expression was associated with wood smoke exposure (71.1% vs 28.9%, P = .013) and presence of EGFR (+) mutations (66.7% vs 33.3%, P = .04). Survival analysis carried out in the whole population did not show any association of CD47 expression and survival outcome. However, in patients with EGFR (+) mutations, CD47 expression was associated with higher progression-free survival (PFS) (12.2 vs. 4.4 months, P = .032). When the survival analysis was performed according to CD47 levels (cut off value: 150), both, PFS and overall survival (OS) were shortened in patients with a high expression of CD47 (10.7 vs. NR, P = .156) and (29.2 vs. NR months P = .023), respectively. CONCLUSIONS: CD47 overexpression is not a prognostic factor for PFS and OS in NSCLC patients. However, the presence of EGFR mutations and high expression of CD47 were associated with shortened PFS and OS. Coexpression of these markers represents a potential biomarker and characterizes a therapeutic niche for lung cancer.


Subject(s)
Adenocarcinoma of Lung/mortality , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/metabolism , CD47 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Squamous Cell/mortality , Lung Neoplasms/mortality , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Biomarkers, Tumor/genetics , CD47 Antigen/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Female , Follow-Up Studies , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Middle Aged , Prognosis , Retrospective Studies , Survival Rate
18.
PLoS One ; 14(3): e0203737, 2019.
Article in English | MEDLINE | ID: mdl-30865637

ABSTRACT

The threat of invasive plant species in island populations prompts the need to better understand their population genetics and dynamics. In the Galapagos islands, this is exemplified by the introduced guava (Psidium guajava), considered one of the greatest threats to the local biodiversity due to its effective spread in the archipelago and its ability to outcompete endemic species. To better understand its history and genetics, we analyzed individuals from three inhabited islands in the Galapagos archipelago with 11 SSR markers. Our results reveal similar genetic diversity between islands, and the populations appear to be distinct: the islands of San Cristobal and Isabela are genetically different while the population of Santa Cruz is a mixture from both. Additional evidence for genetic bottlenecks and the inference of introduction events suggests an original introduction of the species in San Cristobal, from where it was later introduced to Isabela, and finally into Santa Cruz. Alternatively, a second introduction in Isabela might have occurred. These results are contrasted with the historical record, providing a first overview of the history of P. guajava in the Galapagos islands and its current population dynamics.


Subject(s)
Genetic Variation , Genetics, Population , Genome, Plant , Introduced Species , Population Dynamics , Psidium/genetics , Biodiversity , DNA, Plant/analysis , DNA, Plant/genetics , Ecosystem , Ecuador
19.
F1000Res ; 7: 1361, 2018.
Article in English | MEDLINE | ID: mdl-30345032

ABSTRACT

We report the complete plastome sequences of an endemic and an unidentified species from the genus Psidium in the Galápagos Islands ( P. galapageium and Psidium sp. respectively).


Subject(s)
Psidium , Ecuador
20.
Ginecol Obstet Mex ; 81(12): 700-5, 2013 Dec.
Article in Spanish | MEDLINE | ID: mdl-24620523

ABSTRACT

BACKGROUND: The etiology of uterine leiomyomatosis is multifactorial and it is unknown if a relation between anti-Müllerian hormone (hormona anti-mülleriana) and uterine leiomyomatosis exists. OBJECTIVE: To determine the differences of hormona anti-mülleriana levels in women with and without uterine leiomyomatosis. METHODS: 60 women were studied (30 with and 30 without uterine leiomyomatosis). The diagnosis was confirmed by histopathology. Both groups were paired by age and in all them serum levels of hormona antimülleriana were measured using ELISA, also estradiol and progesterone serum levels were determined. hormona anti-mülleriana-RII immunohistochemistry was done in healthy myometrium and in leiomyomas. RESULTS: The mean age between the groups didn't show statistical difference (41.8 +/- 5.6 years vs. 41.4 +/- 5.7 years). Also no differences were found in weight, height and body mass index. Serum levels of hormona antimülleriana were lower in those with leiomyomatosis [0.21 (0-10.4) ng/ml vs. 1.83 (0-6.38) ng/ml, p < 0.005]. No statistical differences were found in estradiol and progesterone serum levels between the groups. The hormona antimülleriana receptor was no expressed neither in the healthy myometrium nor in the leiomyomas. CONCLUSIONS: Women with leiomyomatosis had lower hormona antimülleriana levels. More studies are needed to determine if a relation exists between hormona antimülleriana and uterine leiomyomas.


Subject(s)
Anti-Mullerian Hormone/blood , Leiomyoma/blood , Uterine Neoplasms/blood , Adult , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Estradiol/blood , Female , Humans , Leiomyoma/pathology , Middle Aged , Progesterone/blood , Receptors, Peptide/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Uterine Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL